Optimal. Leaf size=33 \[ -e^{\frac {x^2}{-1+e^{\frac {2}{e^4+x}}-x}}+\log \left (-\frac {9 x}{5}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 16.73, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x^2+2 x^3+x^4+e^8 \left (1+2 x+x^2\right )+e^{\frac {4}{e^4+x}} \left (e^8+2 e^4 x+x^2\right )+e^4 \left (2 x+4 x^2+2 x^3\right )+e^{\frac {2}{e^4+x}} \left (e^8 (-2-2 x)-2 x^2-2 x^3+e^4 \left (-4 x-4 x^2\right )\right )+e^{\frac {x^2}{-1+e^{\frac {2}{e^4+x}}-x}} \left (2 x^4+x^5+e^8 \left (2 x^2+x^3\right )+e^{\frac {2}{e^4+x}} \left (-2 e^8 x^2-2 x^3-4 e^4 x^3-2 x^4\right )+e^4 \left (4 x^3+2 x^4\right )\right )}{x^3+2 x^4+x^5+e^8 \left (x+2 x^2+x^3\right )+e^{\frac {4}{e^4+x}} \left (e^8 x+2 e^4 x^2+x^3\right )+e^4 \left (2 x^2+4 x^3+2 x^4\right )+e^{\frac {2}{e^4+x}} \left (-2 x^3-2 x^4+e^8 \left (-2 x-2 x^2\right )+e^4 \left (-4 x^2-4 x^3\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x^2+2 x^3+x^4+e^8 (1+x)^2+2 e^4 x (1+x)^2+e^{\frac {4}{e^4+x}} \left (e^4+x\right )^2-2 e^{\frac {2}{e^4+x}} (1+x) \left (e^4+x\right )^2+e^{\frac {x^2}{-1+e^{\frac {2}{e^4+x}}-x}} x^2 \left (2 x^2+x^3+e^8 (2+x)+2 e^4 x (2+x)-2 e^{\frac {2}{e^4+x}} \left (e^8+x+2 e^4 x+x^2\right )\right )}{x \left (e^4+x\right )^2 \left (1-e^{\frac {2}{e^4+x}}+x\right )^2} \, dx\\ &=\int \left (\frac {1}{x}+\frac {e^{\frac {x^2}{-1+e^{\frac {2}{e^4+x}}-x}} x^2 \left (-2-e^8-2 \left (1+e^4\right ) x-x^2\right )}{\left (e^4+x\right )^2 \left (1-e^{\frac {2}{e^4+x}}+x\right )^2}+\frac {2 e^{\frac {x^2}{-1+e^{\frac {2}{e^4+x}}-x}} x \left (e^8+\left (1+2 e^4\right ) x+x^2\right )}{\left (e^4+x\right )^2 \left (1-e^{\frac {2}{e^4+x}}+x\right )}\right ) \, dx\\ &=\log (x)+2 \int \frac {e^{\frac {x^2}{-1+e^{\frac {2}{e^4+x}}-x}} x \left (e^8+\left (1+2 e^4\right ) x+x^2\right )}{\left (e^4+x\right )^2 \left (1-e^{\frac {2}{e^4+x}}+x\right )} \, dx+\int \frac {e^{\frac {x^2}{-1+e^{\frac {2}{e^4+x}}-x}} x^2 \left (-2-e^8-2 \left (1+e^4\right ) x-x^2\right )}{\left (e^4+x\right )^2 \left (1-e^{\frac {2}{e^4+x}}+x\right )^2} \, dx\\ &=\log (x)+2 \int \left (-\frac {e^{\frac {x^2}{-1+e^{\frac {2}{e^4+x}}-x}}}{-1+e^{\frac {2}{e^4+x}}-x}-\frac {e^{8+\frac {x^2}{-1+e^{\frac {2}{e^4+x}}-x}}}{\left (-1+e^{\frac {2}{e^4+x}}-x\right ) \left (e^4+x\right )^2}+\frac {2 e^{4+\frac {x^2}{-1+e^{\frac {2}{e^4+x}}-x}}}{\left (-1+e^{\frac {2}{e^4+x}}-x\right ) \left (e^4+x\right )}+\frac {e^{\frac {x^2}{-1+e^{\frac {2}{e^4+x}}-x}} x}{1-e^{\frac {2}{e^4+x}}+x}\right ) \, dx+\int \left (\frac {2 e^{\frac {x^2}{-1+e^{\frac {2}{e^4+x}}-x}} \left (-1+2 e^4\right )}{\left (-1+e^{\frac {2}{e^4+x}}-x\right )^2}-\frac {2 e^{\frac {x^2}{-1+e^{\frac {2}{e^4+x}}-x}} x}{\left (-1+e^{\frac {2}{e^4+x}}-x\right )^2}-\frac {e^{\frac {x^2}{-1+e^{\frac {2}{e^4+x}}-x}} x^2}{\left (-1+e^{\frac {2}{e^4+x}}-x\right )^2}+\frac {2 e^{8+\frac {x^2}{-1+e^{\frac {2}{e^4+x}}-x}} \left (-1+e^4\right )}{\left (-1+e^{\frac {2}{e^4+x}}-x\right )^2 \left (e^4+x\right )^2}-\frac {2 e^{4+\frac {x^2}{-1+e^{\frac {2}{e^4+x}}-x}} \left (-2+3 e^4\right )}{\left (-1+e^{\frac {2}{e^4+x}}-x\right )^2 \left (e^4+x\right )}\right ) \, dx\\ &=\log (x)-2 \int \frac {e^{\frac {x^2}{-1+e^{\frac {2}{e^4+x}}-x}}}{-1+e^{\frac {2}{e^4+x}}-x} \, dx-2 \int \frac {e^{\frac {x^2}{-1+e^{\frac {2}{e^4+x}}-x}} x}{\left (-1+e^{\frac {2}{e^4+x}}-x\right )^2} \, dx-2 \int \frac {e^{8+\frac {x^2}{-1+e^{\frac {2}{e^4+x}}-x}}}{\left (-1+e^{\frac {2}{e^4+x}}-x\right ) \left (e^4+x\right )^2} \, dx+2 \int \frac {e^{\frac {x^2}{-1+e^{\frac {2}{e^4+x}}-x}} x}{1-e^{\frac {2}{e^4+x}}+x} \, dx+4 \int \frac {e^{4+\frac {x^2}{-1+e^{\frac {2}{e^4+x}}-x}}}{\left (-1+e^{\frac {2}{e^4+x}}-x\right ) \left (e^4+x\right )} \, dx+\left (2 \left (2-3 e^4\right )\right ) \int \frac {e^{4+\frac {x^2}{-1+e^{\frac {2}{e^4+x}}-x}}}{\left (-1+e^{\frac {2}{e^4+x}}-x\right )^2 \left (e^4+x\right )} \, dx-\left (2 \left (1-2 e^4\right )\right ) \int \frac {e^{\frac {x^2}{-1+e^{\frac {2}{e^4+x}}-x}}}{\left (-1+e^{\frac {2}{e^4+x}}-x\right )^2} \, dx-\left (2 \left (1-e^4\right )\right ) \int \frac {e^{8+\frac {x^2}{-1+e^{\frac {2}{e^4+x}}-x}}}{\left (-1+e^{\frac {2}{e^4+x}}-x\right )^2 \left (e^4+x\right )^2} \, dx-\int \frac {e^{\frac {x^2}{-1+e^{\frac {2}{e^4+x}}-x}} x^2}{\left (-1+e^{\frac {2}{e^4+x}}-x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.81, size = 29, normalized size = 0.88 \begin {gather*} -e^{\frac {x^2}{-1+e^{\frac {2}{e^4+x}}-x}}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 2.06, size = 27, normalized size = 0.82 \begin {gather*} -e^{\left (-\frac {x^{2}}{x - e^{\left (\frac {2}{x + e^{4}}\right )} + 1}\right )} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.55, size = 28, normalized size = 0.85
method | result | size |
risch | \(\ln \relax (x )-{\mathrm e}^{-\frac {x^{2}}{x -{\mathrm e}^{\frac {2}{x +{\mathrm e}^{4}}}+1}}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\int -\frac {{\left (x^{4} e + 2 \, x^{3} {\left (e^{5} + e\right )} + x^{2} {\left (e^{9} + 4 \, e^{5}\right )} + 2 \, x e^{9} - 2 \, {\left (x^{3} e + x^{2} {\left (2 \, e^{5} + e\right )} + x e^{9}\right )} e^{\left (\frac {2}{x + e^{4}}\right )}\right )} e^{\left (-\frac {e^{\left (\frac {4}{x + e^{4}}\right )}}{x - e^{\left (\frac {2}{x + e^{4}}\right )} + 1} + \frac {2 \, e^{\left (\frac {2}{x + e^{4}}\right )}}{x - e^{\left (\frac {2}{x + e^{4}}\right )} + 1} - \frac {1}{x - e^{\left (\frac {2}{x + e^{4}}\right )} + 1} - e^{\left (\frac {2}{x + e^{4}}\right )}\right )}}{{\left (x^{2} + 2 \, x e^{4} + e^{8}\right )} e^{\left (x + \frac {4}{x + e^{4}}\right )} - 2 \, {\left (x^{3} + x^{2} {\left (2 \, e^{4} + 1\right )} + x {\left (e^{8} + 2 \, e^{4}\right )} + e^{8}\right )} e^{\left (x + \frac {2}{x + e^{4}}\right )} + {\left (x^{4} + 2 \, x^{3} {\left (e^{4} + 1\right )} + x^{2} {\left (e^{8} + 4 \, e^{4} + 1\right )} + 2 \, x {\left (e^{8} + e^{4}\right )} + e^{8}\right )} e^{x}}\,{d x} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.80, size = 27, normalized size = 0.82 \begin {gather*} \ln \relax (x)-{\mathrm {e}}^{-\frac {x^2}{x-{\mathrm {e}}^{\frac {2}{x+{\mathrm {e}}^4}}+1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.45, size = 19, normalized size = 0.58 \begin {gather*} - e^{\frac {x^{2}}{- x + e^{\frac {2}{x + e^{4}}} - 1}} + \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________