Optimal. Leaf size=26 \[ \frac {1}{4} e^{3/5} x \sqrt [5]{x \left (x+3 \left (-1+e^3\right ) x\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 27, normalized size of antiderivative = 1.04, number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {6, 12, 15, 30} \begin {gather*} \frac {1}{4} \sqrt [5]{3 e^6-2 e^3} x \sqrt [5]{x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 15
Rule 30
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {7}{20} \sqrt [5]{-2 e^3+3 e^6} \sqrt [5]{x^2} \, dx\\ &=\frac {1}{20} \left (7 \sqrt [5]{-2 e^3+3 e^6}\right ) \int \sqrt [5]{x^2} \, dx\\ &=\frac {\left (7 \sqrt [5]{-2 e^3+3 e^6} \sqrt [5]{x^2}\right ) \int x^{2/5} \, dx}{20 x^{2/5}}\\ &=\frac {1}{4} \sqrt [5]{-2 e^3+3 e^6} x \sqrt [5]{x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 26, normalized size = 1.00 \begin {gather*} \frac {1}{4} x \sqrt [5]{-2 e^3 x^2+3 e^6 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 20, normalized size = 0.77 \begin {gather*} \frac {1}{4} \, {\left (3 \, x^{2} e^{6} - 2 \, x^{2} e^{3}\right )}^{\frac {1}{5}} x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {7}{20} \, {\left (3 \, x^{2} e^{6} - 2 \, x^{2} e^{3}\right )}^{\frac {1}{5}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.21, size = 18, normalized size = 0.69
method | result | size |
risch | \(\frac {\left (x^{2} {\mathrm e}^{3} \left (3 \,{\mathrm e}^{3}-2\right )\right )^{\frac {1}{5}} x}{4}\) | \(18\) |
gosper | \(\frac {x \left (3 x^{2} {\mathrm e}^{6}-2 x^{2} {\mathrm e}^{3}\right )^{\frac {1}{5}}}{4}\) | \(23\) |
trager | \(\frac {x \left (3 x^{2} {\mathrm e}^{6}-2 x^{2} {\mathrm e}^{3}\right )^{\frac {1}{5}}}{4}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 15, normalized size = 0.58 \begin {gather*} \frac {1}{4} \, x^{\frac {7}{5}} {\left (3 \, e^{3} - 2\right )}^{\frac {1}{5}} e^{\frac {3}{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.13, size = 20, normalized size = 0.77 \begin {gather*} \frac {x\,{\left ({\mathrm {e}}^3\right )}^{1/5}\,{\left (3\,{\mathrm {e}}^3-2\right )}^{1/5}\,{\left (x^2\right )}^{1/5}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 7.78, size = 26, normalized size = 1.00 \begin {gather*} \frac {x^{3} \sqrt [5]{-2 + 3 e^{3}} e^{\frac {3}{5}}}{4 \left (x^{2}\right )^{\frac {4}{5}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________