Optimal. Leaf size=33 \[ \left (16+e^{5+\frac {8 \left (-e^{\frac {\left (3-e^5 x\right )^2}{x^2}}+x\right )}{x}}\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 2.60, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {2 \left (-8 e^{\frac {9-6 e^5 x+e^{10} x^2}{x^2}}+13 x\right )}{x}+\frac {9-6 e^5 x+e^{10} x^2}{x^2}\right ) \left (288-96 e^5 x+16 x^2\right )+\exp \left (\frac {-8 e^{\frac {9-6 e^5 x+e^{10} x^2}{x^2}}+13 x}{x}+\frac {9-6 e^5 x+e^{10} x^2}{x^2}\right ) \left (4608-1536 e^5 x+256 x^2\right )}{x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {288 \exp \left (26 \left (1+\frac {e^{10}}{26}\right )+\frac {9}{x^2}-\frac {6 e^5}{x}-\frac {16 e^{\frac {\left (-3+e^5 x\right )^2}{x^2}}}{x}\right )}{x^4}+\frac {4608 \exp \left (13 \left (1+\frac {e^{10}}{13}\right )+\frac {9}{x^2}-\frac {6 e^5}{x}-\frac {8 e^{\frac {\left (-3+e^5 x\right )^2}{x^2}}}{x}\right )}{x^4}-\frac {96 \exp \left (31 \left (1+\frac {e^{10}}{31}\right )+\frac {9}{x^2}-\frac {6 e^5}{x}-\frac {16 e^{\frac {\left (-3+e^5 x\right )^2}{x^2}}}{x}\right )}{x^3}-\frac {1536 \exp \left (18 \left (1+\frac {e^{10}}{18}\right )+\frac {9}{x^2}-\frac {6 e^5}{x}-\frac {8 e^{\frac {\left (-3+e^5 x\right )^2}{x^2}}}{x}\right )}{x^3}+\frac {16 \exp \left (26 \left (1+\frac {e^{10}}{26}\right )+\frac {9}{x^2}-\frac {6 e^5}{x}-\frac {16 e^{\frac {\left (-3+e^5 x\right )^2}{x^2}}}{x}\right )}{x^2}+\frac {256 \exp \left (13 \left (1+\frac {e^{10}}{13}\right )+\frac {9}{x^2}-\frac {6 e^5}{x}-\frac {8 e^{\frac {\left (-3+e^5 x\right )^2}{x^2}}}{x}\right )}{x^2}\right ) \, dx\\ &=16 \int \frac {\exp \left (26 \left (1+\frac {e^{10}}{26}\right )+\frac {9}{x^2}-\frac {6 e^5}{x}-\frac {16 e^{\frac {\left (-3+e^5 x\right )^2}{x^2}}}{x}\right )}{x^2} \, dx-96 \int \frac {\exp \left (31 \left (1+\frac {e^{10}}{31}\right )+\frac {9}{x^2}-\frac {6 e^5}{x}-\frac {16 e^{\frac {\left (-3+e^5 x\right )^2}{x^2}}}{x}\right )}{x^3} \, dx+256 \int \frac {\exp \left (13 \left (1+\frac {e^{10}}{13}\right )+\frac {9}{x^2}-\frac {6 e^5}{x}-\frac {8 e^{\frac {\left (-3+e^5 x\right )^2}{x^2}}}{x}\right )}{x^2} \, dx+288 \int \frac {\exp \left (26 \left (1+\frac {e^{10}}{26}\right )+\frac {9}{x^2}-\frac {6 e^5}{x}-\frac {16 e^{\frac {\left (-3+e^5 x\right )^2}{x^2}}}{x}\right )}{x^4} \, dx-1536 \int \frac {\exp \left (18 \left (1+\frac {e^{10}}{18}\right )+\frac {9}{x^2}-\frac {6 e^5}{x}-\frac {8 e^{\frac {\left (-3+e^5 x\right )^2}{x^2}}}{x}\right )}{x^3} \, dx+4608 \int \frac {\exp \left (13 \left (1+\frac {e^{10}}{13}\right )+\frac {9}{x^2}-\frac {6 e^5}{x}-\frac {8 e^{\frac {\left (-3+e^5 x\right )^2}{x^2}}}{x}\right )}{x^4} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 53, normalized size = 1.61 \begin {gather*} e^{13-\frac {16 e^{\frac {\left (-3+e^5 x\right )^2}{x^2}}}{x}} \left (e^{13}+32 e^{\frac {8 e^{\frac {\left (-3+e^5 x\right )^2}{x^2}}}{x}}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.70, size = 130, normalized size = 3.94 \begin {gather*} {\left (e^{\left (\frac {2 \, {\left (x^{2} e^{10} + 13 \, x^{2} - 6 \, x e^{5} - 8 \, x e^{\left (\frac {x^{2} e^{10} - 6 \, x e^{5} + 9}{x^{2}}\right )} + 9\right )}}{x^{2}}\right )} + 32 \, e^{\left (\frac {x^{2} e^{10} + 13 \, x^{2} - 6 \, x e^{5} - 8 \, x e^{\left (\frac {x^{2} e^{10} - 6 \, x e^{5} + 9}{x^{2}}\right )} + 9}{x^{2}} + \frac {x^{2} e^{10} - 6 \, x e^{5} + 9}{x^{2}}\right )}\right )} e^{\left (-\frac {2 \, {\left (x^{2} e^{10} - 6 \, x e^{5} + 9\right )}}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {16 \, {\left ({\left (x^{2} - 6 \, x e^{5} + 18\right )} e^{\left (\frac {2 \, {\left (13 \, x - 8 \, e^{\left (\frac {x^{2} e^{10} - 6 \, x e^{5} + 9}{x^{2}}\right )}\right )}}{x} + \frac {x^{2} e^{10} - 6 \, x e^{5} + 9}{x^{2}}\right )} + 16 \, {\left (x^{2} - 6 \, x e^{5} + 18\right )} e^{\left (\frac {13 \, x - 8 \, e^{\left (\frac {x^{2} e^{10} - 6 \, x e^{5} + 9}{x^{2}}\right )}}{x} + \frac {x^{2} e^{10} - 6 \, x e^{5} + 9}{x^{2}}\right )}\right )}}{x^{4}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.14, size = 63, normalized size = 1.91
method | result | size |
risch | \({\mathrm e}^{\frac {-16 \,{\mathrm e}^{\frac {x^{2} {\mathrm e}^{10}-6 x \,{\mathrm e}^{5}+9}{x^{2}}}+26 x}{x}}+32 \,{\mathrm e}^{\frac {-8 \,{\mathrm e}^{\frac {x^{2} {\mathrm e}^{10}-6 x \,{\mathrm e}^{5}+9}{x^{2}}}+13 x}{x}}\) | \(63\) |
norman | \(\frac {x^{3} {\mathrm e}^{\frac {-16 \,{\mathrm e}^{\frac {x^{2} {\mathrm e}^{10}-6 x \,{\mathrm e}^{5}+9}{x^{2}}}+26 x}{x}}+32 x^{3} {\mathrm e}^{\frac {-8 \,{\mathrm e}^{\frac {x^{2} {\mathrm e}^{10}-6 x \,{\mathrm e}^{5}+9}{x^{2}}}+13 x}{x}}}{x^{3}}\) | \(79\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.82, size = 52, normalized size = 1.58 \begin {gather*} {\left (e^{26} + 32 \, e^{\left (\frac {8 \, e^{\left (-\frac {6 \, e^{5}}{x} + \frac {9}{x^{2}} + e^{10}\right )}}{x} + 13\right )}\right )} e^{\left (-\frac {16 \, e^{\left (-\frac {6 \, e^{5}}{x} + \frac {9}{x^{2}} + e^{10}\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.09, size = 54, normalized size = 1.64 \begin {gather*} 32\,{\mathrm {e}}^{-\frac {8\,{\mathrm {e}}^{-\frac {6\,{\mathrm {e}}^5}{x}}\,{\mathrm {e}}^{\frac {9}{x^2}}\,{\mathrm {e}}^{{\mathrm {e}}^{10}}}{x}}\,{\mathrm {e}}^{13}+{\mathrm {e}}^{-\frac {16\,{\mathrm {e}}^{-\frac {6\,{\mathrm {e}}^5}{x}}\,{\mathrm {e}}^{\frac {9}{x^2}}\,{\mathrm {e}}^{{\mathrm {e}}^{10}}}{x}}\,{\mathrm {e}}^{26} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.59, size = 58, normalized size = 1.76 \begin {gather*} e^{\frac {2 \left (13 x - 8 e^{\frac {x^{2} e^{10} - 6 x e^{5} + 9}{x^{2}}}\right )}{x}} + 32 e^{\frac {13 x - 8 e^{\frac {x^{2} e^{10} - 6 x e^{5} + 9}{x^{2}}}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________