Optimal. Leaf size=24 \[ -x-\log (2 x)+\log \left (\frac {1}{2} \left (-1+\left (-3+e^2\right ) x\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 20, normalized size of antiderivative = 0.83, number of steps used = 5, number of rules used = 3, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.086, Rules used = {6, 1593, 893} \begin {gather*} -x-\log (x)+\log \left (\left (3-e^2\right ) x+1\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 893
Rule 1593
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1+x+\left (3-e^2\right ) x^2}{-x-3 x^2+e^2 x^2} \, dx\\ &=\int \frac {1+x+\left (3-e^2\right ) x^2}{-x+\left (-3+e^2\right ) x^2} \, dx\\ &=\int \frac {1+x+\left (3-e^2\right ) x^2}{x \left (-1+\left (-3+e^2\right ) x\right )} \, dx\\ &=\int \left (-1-\frac {1}{x}+\frac {3-e^2}{1+\left (3-e^2\right ) x}\right ) \, dx\\ &=-x-\log (x)+\log \left (1+\left (3-e^2\right ) x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 20, normalized size = 0.83 \begin {gather*} -x-\log (x)+\log \left (1+3 x-e^2 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 18, normalized size = 0.75 \begin {gather*} -x + \log \left (x e^{2} - 3 \, x - 1\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 33, normalized size = 1.38 \begin {gather*} -\frac {x e^{2} - 3 \, x}{e^{2} - 3} + \log \left ({\left | x e^{2} - 3 \, x - 1 \right |}\right ) - \log \left ({\left | x \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.24, size = 19, normalized size = 0.79
method | result | size |
default | \(-x -\ln \relax (x )+\ln \left ({\mathrm e}^{2} x -3 x -1\right )\) | \(19\) |
norman | \(-x -\ln \relax (x )+\ln \left ({\mathrm e}^{2} x -3 x -1\right )\) | \(19\) |
risch | \(-x -\ln \relax (x )+\ln \left (1+x \left (-{\mathrm e}^{2}+3\right )\right )\) | \(20\) |
meijerg | \(\frac {\left ({\mathrm e}^{2}-3\right ) \left (\ln \relax (x )+\ln \left (-{\mathrm e}^{2}+3\right )-\ln \left (1+x \left (-{\mathrm e}^{2}+3\right )\right )\right )}{-{\mathrm e}^{2}+3}-\frac {x \left (-{\mathrm e}^{2}+3\right )-\ln \left (1+x \left (-{\mathrm e}^{2}+3\right )\right )}{-{\mathrm e}^{2}+3}-\frac {\ln \left (1+x \left (-{\mathrm e}^{2}+3\right )\right )}{-{\mathrm e}^{2}+3}\) | \(91\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 17, normalized size = 0.71 \begin {gather*} -x + \log \left (x {\left (e^{2} - 3\right )} - 1\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.54, size = 17, normalized size = 0.71 \begin {gather*} -x-2\,\mathrm {atanh}\left (x\,\left (2\,{\mathrm {e}}^2-6\right )-1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 15, normalized size = 0.62 \begin {gather*} - x - \log {\relax (x )} + \log {\left (x - \frac {2}{-6 + 2 e^{2}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________