Optimal. Leaf size=24 \[ \frac {x \log (-8+x-x (4 x-\log (x)))}{e^2+x} \]
________________________________________________________________________________________
Rubi [F] time = 2.87, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2 x^2-8 x^3+e^2 \left (2 x-8 x^2\right )+\left (e^2 x+x^2\right ) \log (x)+\left (e^2 \left (-8+x-4 x^2\right )+e^2 x \log (x)\right ) \log \left (-8+x-4 x^2+x \log (x)\right )}{-8 x^2+x^3-4 x^4+e^4 \left (-8+x-4 x^2\right )+e^2 \left (-16 x+2 x^2-8 x^3\right )+\left (e^4 x+2 e^2 x^2+x^3\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 x \left (e^2+x\right ) (-1+4 x)+e^2 \left (8-x+4 x^2\right ) \log \left (-8+x-4 x^2+x \log (x)\right )-x \log (x) \left (e^2+x+e^2 \log \left (-8+x-4 x^2+x \log (x)\right )\right )}{\left (e^2+x\right )^2 \left (8-x+4 x^2-x \log (x)\right )} \, dx\\ &=\int \left (\frac {2 x (-1+4 x)}{\left (e^2+x\right ) \left (8-x+4 x^2-x \log (x)\right )}-\frac {e^2 x \log (x)}{\left (e^2+x\right )^2 \left (8-x+4 x^2-x \log (x)\right )}-\frac {x^2 \log (x)}{\left (e^2+x\right )^2 \left (8-x+4 x^2-x \log (x)\right )}+\frac {e^2 \log \left (-8+x-4 x^2+x \log (x)\right )}{\left (e^2+x\right )^2}\right ) \, dx\\ &=2 \int \frac {x (-1+4 x)}{\left (e^2+x\right ) \left (8-x+4 x^2-x \log (x)\right )} \, dx-e^2 \int \frac {x \log (x)}{\left (e^2+x\right )^2 \left (8-x+4 x^2-x \log (x)\right )} \, dx+e^2 \int \frac {\log \left (-8+x-4 x^2+x \log (x)\right )}{\left (e^2+x\right )^2} \, dx-\int \frac {x^2 \log (x)}{\left (e^2+x\right )^2 \left (8-x+4 x^2-x \log (x)\right )} \, dx\\ &=2 \int \left (-\frac {4 \left (1+\frac {1}{4 e^2}\right ) e^2}{8-x+4 x^2-x \log (x)}+\frac {4 x}{8-x+4 x^2-x \log (x)}+\frac {e^2+4 e^4}{\left (e^2+x\right ) \left (8-x+4 x^2-x \log (x)\right )}\right ) \, dx-e^2 \int \left (-\frac {1}{\left (e^2+x\right )^2}+\frac {8-x+4 x^2}{\left (e^2+x\right )^2 \left (8-x+4 x^2-x \log (x)\right )}\right ) \, dx+e^2 \int \frac {\log \left (-8+x-4 x^2+x \log (x)\right )}{\left (e^2+x\right )^2} \, dx-\int \left (-\frac {x}{\left (e^2+x\right )^2}+\frac {x \left (8-x+4 x^2\right )}{\left (e^2+x\right )^2 \left (8-x+4 x^2-x \log (x)\right )}\right ) \, dx\\ &=-\frac {e^2}{e^2+x}+8 \int \frac {x}{8-x+4 x^2-x \log (x)} \, dx-e^2 \int \frac {8-x+4 x^2}{\left (e^2+x\right )^2 \left (8-x+4 x^2-x \log (x)\right )} \, dx+e^2 \int \frac {\log \left (-8+x-4 x^2+x \log (x)\right )}{\left (e^2+x\right )^2} \, dx-\left (2 \left (1+4 e^2\right )\right ) \int \frac {1}{8-x+4 x^2-x \log (x)} \, dx+\left (2 e^2 \left (1+4 e^2\right )\right ) \int \frac {1}{\left (e^2+x\right ) \left (8-x+4 x^2-x \log (x)\right )} \, dx+\int \frac {x}{\left (e^2+x\right )^2} \, dx-\int \frac {x \left (8-x+4 x^2\right )}{\left (e^2+x\right )^2 \left (8-x+4 x^2-x \log (x)\right )} \, dx\\ &=-\frac {e^2}{e^2+x}+8 \int \frac {x}{8-x+4 x^2-x \log (x)} \, dx-e^2 \int \left (\frac {4}{8-x+4 x^2-x \log (x)}+\frac {8+e^2+4 e^4}{\left (e^2+x\right )^2 \left (8-x+4 x^2-x \log (x)\right )}+\frac {-1-8 e^2}{\left (e^2+x\right ) \left (8-x+4 x^2-x \log (x)\right )}\right ) \, dx+e^2 \int \frac {\log \left (-8+x-4 x^2+x \log (x)\right )}{\left (e^2+x\right )^2} \, dx-\left (2 \left (1+4 e^2\right )\right ) \int \frac {1}{8-x+4 x^2-x \log (x)} \, dx+\left (2 e^2 \left (1+4 e^2\right )\right ) \int \frac {1}{\left (e^2+x\right ) \left (8-x+4 x^2-x \log (x)\right )} \, dx+\int \left (-\frac {e^2}{\left (e^2+x\right )^2}+\frac {1}{e^2+x}\right ) \, dx-\int \left (-\frac {8 \left (1+\frac {1}{8 e^2}\right ) e^2}{8-x+4 x^2-x \log (x)}+\frac {4 x}{8-x+4 x^2-x \log (x)}-\frac {e^2 \left (8+e^2+4 e^4\right )}{\left (e^2+x\right )^2 \left (8-x+4 x^2-x \log (x)\right )}+\frac {2 \left (4+e^2+6 e^4\right )}{\left (e^2+x\right ) \left (8-x+4 x^2-x \log (x)\right )}\right ) \, dx\\ &=\log \left (e^2+x\right )-4 \int \frac {x}{8-x+4 x^2-x \log (x)} \, dx+8 \int \frac {x}{8-x+4 x^2-x \log (x)} \, dx+e^2 \int \frac {\log \left (-8+x-4 x^2+x \log (x)\right )}{\left (e^2+x\right )^2} \, dx-\left (4 e^2\right ) \int \frac {1}{8-x+4 x^2-x \log (x)} \, dx-\left (2 \left (1+4 e^2\right )\right ) \int \frac {1}{8-x+4 x^2-x \log (x)} \, dx+\left (2 e^2 \left (1+4 e^2\right )\right ) \int \frac {1}{\left (e^2+x\right ) \left (8-x+4 x^2-x \log (x)\right )} \, dx+\left (1+8 e^2\right ) \int \frac {1}{8-x+4 x^2-x \log (x)} \, dx+\left (e^2 \left (1+8 e^2\right )\right ) \int \frac {1}{\left (e^2+x\right ) \left (8-x+4 x^2-x \log (x)\right )} \, dx-\left (2 \left (4+e^2+6 e^4\right )\right ) \int \frac {1}{\left (e^2+x\right ) \left (8-x+4 x^2-x \log (x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 42, normalized size = 1.75 \begin {gather*} \log \left (8-x+4 x^2-x \log (x)\right )-\frac {e^2 \log \left (-8+x-4 x^2+x \log (x)\right )}{e^2+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 21, normalized size = 0.88 \begin {gather*} \frac {x \log \left (-4 \, x^{2} + x \log \relax (x) + x - 8\right )}{x + e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.23, size = 46, normalized size = 1.92
method | result | size |
risch | \(-\frac {{\mathrm e}^{2} \ln \left (x \ln \relax (x )-4 x^{2}+x -8\right )}{x +{\mathrm e}^{2}}+\ln \relax (x )+\ln \left (\ln \relax (x )-\frac {4 x^{2}-x +8}{x}\right )\) | \(46\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.42, size = 47, normalized size = 1.96 \begin {gather*} -\frac {e^{2} \log \left (-4 \, x^{2} + x \log \relax (x) + x - 8\right )}{x + e^{2}} + \log \relax (x) + \log \left (-\frac {4 \, x^{2} - x \log \relax (x) - x + 8}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.12, size = 43, normalized size = 1.79 \begin {gather*} \ln \left (\frac {x+x\,\ln \relax (x)-4\,x^2-8}{x}\right )+\ln \relax (x)-\frac {\ln \left (x+x\,\ln \relax (x)-4\,x^2-8\right )\,{\mathrm {e}}^2}{x+{\mathrm {e}}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.68, size = 41, normalized size = 1.71 \begin {gather*} \log {\relax (x )} + \log {\left (\log {\relax (x )} + \frac {- 4 x^{2} + x - 8}{x} \right )} - \frac {e^{2} \log {\left (- 4 x^{2} + x \log {\relax (x )} + x - 8 \right )}}{x + e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________