Optimal. Leaf size=26 \[ \frac {1}{5} x^2 \left (-2+2 x^3+\frac {-1+x^2}{\log (5)}\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.03, antiderivative size = 99, normalized size of antiderivative = 3.81, number of steps used = 4, number of rules used = 1, integrand size = 63, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.016, Rules used = {12} \begin {gather*} \frac {4 x^8}{5}+\frac {4 x^7}{5 \log (5)}+\frac {x^6}{5 \log ^2(5)}-\frac {8 x^5}{5}-\frac {4 x^5}{5 \log (5)}-\frac {2 x^4}{5 \log ^2(5)}-\frac {4 x^4}{5 \log (5)}+\frac {4 x^2}{5}+\frac {x^2}{5 \log ^2(5)}+\frac {4 x^2}{5 \log (5)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (2 x-8 x^3+6 x^5+\left (8 x-16 x^3-20 x^4+28 x^6\right ) \log (5)+\left (8 x-40 x^4+32 x^7\right ) \log ^2(5)\right ) \, dx}{5 \log ^2(5)}\\ &=\frac {x^2}{5 \log ^2(5)}-\frac {2 x^4}{5 \log ^2(5)}+\frac {x^6}{5 \log ^2(5)}+\frac {1}{5} \int \left (8 x-40 x^4+32 x^7\right ) \, dx+\frac {\int \left (8 x-16 x^3-20 x^4+28 x^6\right ) \, dx}{5 \log (5)}\\ &=\frac {4 x^2}{5}-\frac {8 x^5}{5}+\frac {4 x^8}{5}+\frac {x^2}{5 \log ^2(5)}-\frac {2 x^4}{5 \log ^2(5)}+\frac {x^6}{5 \log ^2(5)}+\frac {4 x^2}{5 \log (5)}-\frac {4 x^4}{5 \log (5)}-\frac {4 x^5}{5 \log (5)}+\frac {4 x^7}{5 \log (5)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 28, normalized size = 1.08 \begin {gather*} \frac {x^2 \left (-1+x^2-\log (25)+x^3 \log (25)\right )^2}{5 \log ^2(5)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.70, size = 57, normalized size = 2.19 \begin {gather*} \frac {x^{6} - 2 \, x^{4} + 4 \, {\left (x^{8} - 2 \, x^{5} + x^{2}\right )} \log \relax (5)^{2} + x^{2} + 4 \, {\left (x^{7} - x^{5} - x^{4} + x^{2}\right )} \log \relax (5)}{5 \, \log \relax (5)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.21, size = 57, normalized size = 2.19 \begin {gather*} \frac {x^{6} - 2 \, x^{4} + 4 \, {\left (x^{8} - 2 \, x^{5} + x^{2}\right )} \log \relax (5)^{2} + x^{2} + 4 \, {\left (x^{7} - x^{5} - x^{4} + x^{2}\right )} \log \relax (5)}{5 \, \log \relax (5)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.04, size = 64, normalized size = 2.46
method | result | size |
default | \(\frac {\ln \relax (5)^{2} \left (4 x^{8}-8 x^{5}+4 x^{2}\right )+\ln \relax (5) \left (4 x^{7}-4 x^{5}-4 x^{4}+4 x^{2}\right )+x^{6}-2 x^{4}+x^{2}}{5 \ln \relax (5)^{2}}\) | \(64\) |
norman | \(\frac {\left (-\frac {8 \ln \relax (5)}{5}-\frac {4}{5}\right ) x^{5}+\frac {4 x^{7}}{5}+\frac {4 x^{8} \ln \relax (5)}{5}+\frac {x^{6}}{5 \ln \relax (5)}-\frac {2 \left (2 \ln \relax (5)+1\right ) x^{4}}{5 \ln \relax (5)}+\frac {\left (4 \ln \relax (5)^{2}+4 \ln \relax (5)+1\right ) x^{2}}{5 \ln \relax (5)}}{\ln \relax (5)}\) | \(74\) |
risch | \(\frac {4 x^{8}}{5}+\frac {4 x^{7}}{5 \ln \relax (5)}+\frac {x^{6}}{5 \ln \relax (5)^{2}}-\frac {8 x^{5}}{5}-\frac {4 x^{5}}{5 \ln \relax (5)}-\frac {4 x^{4}}{5 \ln \relax (5)}-\frac {2 x^{4}}{5 \ln \relax (5)^{2}}+\frac {4 x^{2}}{5}+\frac {4 x^{2}}{5 \ln \relax (5)}+\frac {x^{2}}{5 \ln \relax (5)^{2}}\) | \(80\) |
gosper | \(\frac {\left (x -1\right ) \left (4 x^{5} \ln \relax (5)^{2}+4 x^{4} \ln \relax (5)^{2}+4 x^{3} \ln \relax (5)^{2}+4 x^{4} \ln \relax (5)-4 x^{2} \ln \relax (5)^{2}+4 x^{3} \ln \relax (5)-4 x \ln \relax (5)^{2}+x^{3}-4 \ln \relax (5)^{2}-4 x \ln \relax (5)+x^{2}-4 \ln \relax (5)-x -1\right ) x^{2}}{5 \ln \relax (5)^{2}}\) | \(96\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.41, size = 57, normalized size = 2.19 \begin {gather*} \frac {x^{6} - 2 \, x^{4} + 4 \, {\left (x^{8} - 2 \, x^{5} + x^{2}\right )} \log \relax (5)^{2} + x^{2} + 4 \, {\left (x^{7} - x^{5} - x^{4} + x^{2}\right )} \log \relax (5)}{5 \, \log \relax (5)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.49, size = 80, normalized size = 3.08 \begin {gather*} \frac {4\,x^8}{5}+\frac {4\,x^7}{5\,\ln \relax (5)}+\frac {x^6}{5\,{\ln \relax (5)}^2}-\frac {\left (20\,\ln \relax (5)+40\,{\ln \relax (5)}^2\right )\,x^5}{25\,{\ln \relax (5)}^2}-\frac {\left (16\,\ln \relax (5)+8\right )\,x^4}{20\,{\ln \relax (5)}^2}+\frac {\left (8\,\ln \relax (5)+8\,{\ln \relax (5)}^2+2\right )\,x^2}{10\,{\ln \relax (5)}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.09, size = 85, normalized size = 3.27 \begin {gather*} \frac {4 x^{8}}{5} + \frac {4 x^{7}}{5 \log {\relax (5 )}} + \frac {x^{6}}{5 \log {\relax (5 )}^{2}} + \frac {x^{5} \left (- 8 \log {\relax (5 )} - 4\right )}{5 \log {\relax (5 )}} + \frac {x^{4} \left (- 4 \log {\relax (5 )} - 2\right )}{5 \log {\relax (5 )}^{2}} + \frac {x^{2} \left (1 + 4 \log {\relax (5 )} + 4 \log {\relax (5 )}^{2}\right )}{5 \log {\relax (5 )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________