Optimal. Leaf size=31 \[ 4+e^x+e^{x^2}-\frac {\left (-4+5 e^{-3/x}\right ) (-3+x)}{4+x} \]
________________________________________________________________________________________
Rubi [A] time = 2.87, antiderivative size = 39, normalized size of antiderivative = 1.26, number of steps used = 48, number of rules used = 10, integrand size = 98, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.102, Rules used = {1594, 27, 6742, 2194, 2209, 2223, 2210, 2222, 2228, 2178} \begin {gather*} e^{x^2}-5 e^{-3/x}+e^x+\frac {35 e^{-3/x}}{x+4}-\frac {28}{x+4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 1594
Rule 2178
Rule 2194
Rule 2209
Rule 2210
Rule 2222
Rule 2223
Rule 2228
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-3/x} \left (180-15 x-50 x^2+28 e^{3/x} x^2+e^{\frac {3}{x}+x} \left (16 x^2+8 x^3+x^4\right )+e^{\frac {3}{x}+x^2} \left (32 x^3+16 x^4+2 x^5\right )\right )}{x^2 \left (16+8 x+x^2\right )} \, dx\\ &=\int \frac {e^{-3/x} \left (180-15 x-50 x^2+28 e^{3/x} x^2+e^{\frac {3}{x}+x} \left (16 x^2+8 x^3+x^4\right )+e^{\frac {3}{x}+x^2} \left (32 x^3+16 x^4+2 x^5\right )\right )}{x^2 (4+x)^2} \, dx\\ &=\int \left (e^x+2 e^{x^2} x+\frac {28}{(4+x)^2}-\frac {50 e^{-3/x}}{(4+x)^2}+\frac {180 e^{-3/x}}{x^2 (4+x)^2}-\frac {15 e^{-3/x}}{x (4+x)^2}\right ) \, dx\\ &=-\frac {28}{4+x}+2 \int e^{x^2} x \, dx-15 \int \frac {e^{-3/x}}{x (4+x)^2} \, dx-50 \int \frac {e^{-3/x}}{(4+x)^2} \, dx+180 \int \frac {e^{-3/x}}{x^2 (4+x)^2} \, dx+\int e^x \, dx\\ &=e^x+e^{x^2}-\frac {28}{4+x}+\frac {50 e^{-3/x}}{4+x}-15 \int \left (\frac {e^{-3/x}}{16 x}-\frac {e^{-3/x}}{4 (4+x)^2}-\frac {e^{-3/x}}{16 (4+x)}\right ) \, dx-150 \int \frac {e^{-3/x}}{x^2 (4+x)} \, dx+180 \int \left (\frac {e^{-3/x}}{16 x^2}-\frac {e^{-3/x}}{32 x}+\frac {e^{-3/x}}{16 (4+x)^2}+\frac {e^{-3/x}}{32 (4+x)}\right ) \, dx\\ &=e^x+e^{x^2}-\frac {28}{4+x}+\frac {50 e^{-3/x}}{4+x}-\frac {15}{16} \int \frac {e^{-3/x}}{x} \, dx+\frac {15}{16} \int \frac {e^{-3/x}}{4+x} \, dx+\frac {15}{4} \int \frac {e^{-3/x}}{(4+x)^2} \, dx-\frac {45}{8} \int \frac {e^{-3/x}}{x} \, dx+\frac {45}{8} \int \frac {e^{-3/x}}{4+x} \, dx+\frac {45}{4} \int \frac {e^{-3/x}}{x^2} \, dx+\frac {45}{4} \int \frac {e^{-3/x}}{(4+x)^2} \, dx-150 \int \left (\frac {e^{-3/x}}{4 x^2}-\frac {e^{-3/x}}{16 x}+\frac {e^{-3/x}}{16 (4+x)}\right ) \, dx\\ &=\frac {15 e^{-3/x}}{4}+e^x+e^{x^2}-\frac {28}{4+x}+\frac {35 e^{-3/x}}{4+x}+\frac {105 \text {Ei}\left (-\frac {3}{x}\right )}{16}+\frac {15}{16} \int \frac {e^{-3/x}}{x} \, dx-\frac {15}{4} \int \frac {e^{-3/x}}{x (4+x)} \, dx+\frac {45}{8} \int \frac {e^{-3/x}}{x} \, dx+\frac {75}{8} \int \frac {e^{-3/x}}{x} \, dx-\frac {75}{8} \int \frac {e^{-3/x}}{4+x} \, dx+\frac {45}{4} \int \frac {e^{-3/x}}{x^2 (4+x)} \, dx-\frac {45}{2} \int \frac {e^{-3/x}}{x (4+x)} \, dx+\frac {135}{4} \int \frac {e^{-3/x}}{x^2 (4+x)} \, dx-\frac {75}{2} \int \frac {e^{-3/x}}{x^2} \, dx\\ &=-\frac {35}{4} e^{-3/x}+e^x+e^{x^2}-\frac {28}{4+x}+\frac {35 e^{-3/x}}{4+x}-\frac {75 \text {Ei}\left (-\frac {3}{x}\right )}{8}+\frac {15}{16} \operatorname {Subst}\left (\int \frac {e^{\frac {3}{4}-\frac {3 x}{4}}}{x} \, dx,x,\frac {4+x}{x}\right )+\frac {45}{8} \operatorname {Subst}\left (\int \frac {e^{\frac {3}{4}-\frac {3 x}{4}}}{x} \, dx,x,\frac {4+x}{x}\right )-\frac {75}{8} \int \frac {e^{-3/x}}{x} \, dx+\frac {45}{4} \int \left (\frac {e^{-3/x}}{4 x^2}-\frac {e^{-3/x}}{16 x}+\frac {e^{-3/x}}{16 (4+x)}\right ) \, dx+\frac {135}{4} \int \left (\frac {e^{-3/x}}{4 x^2}-\frac {e^{-3/x}}{16 x}+\frac {e^{-3/x}}{16 (4+x)}\right ) \, dx+\frac {75}{2} \int \frac {e^{-3/x}}{x (4+x)} \, dx\\ &=-\frac {35}{4} e^{-3/x}+e^x+e^{x^2}-\frac {28}{4+x}+\frac {35 e^{-3/x}}{4+x}+\frac {105}{16} e^{3/4} \text {Ei}\left (-\frac {3 (4+x)}{4 x}\right )-\frac {45}{64} \int \frac {e^{-3/x}}{x} \, dx+\frac {45}{64} \int \frac {e^{-3/x}}{4+x} \, dx-\frac {135}{64} \int \frac {e^{-3/x}}{x} \, dx+\frac {135}{64} \int \frac {e^{-3/x}}{4+x} \, dx+\frac {45}{16} \int \frac {e^{-3/x}}{x^2} \, dx+\frac {135}{16} \int \frac {e^{-3/x}}{x^2} \, dx-\frac {75}{8} \operatorname {Subst}\left (\int \frac {e^{\frac {3}{4}-\frac {3 x}{4}}}{x} \, dx,x,\frac {4+x}{x}\right )\\ &=-5 e^{-3/x}+e^x+e^{x^2}-\frac {28}{4+x}+\frac {35 e^{-3/x}}{4+x}+\frac {45 \text {Ei}\left (-\frac {3}{x}\right )}{16}-\frac {45}{16} e^{3/4} \text {Ei}\left (-\frac {3 (4+x)}{4 x}\right )+\frac {45}{64} \int \frac {e^{-3/x}}{x} \, dx+\frac {135}{64} \int \frac {e^{-3/x}}{x} \, dx-\frac {45}{16} \int \frac {e^{-3/x}}{x (4+x)} \, dx-\frac {135}{16} \int \frac {e^{-3/x}}{x (4+x)} \, dx\\ &=-5 e^{-3/x}+e^x+e^{x^2}-\frac {28}{4+x}+\frac {35 e^{-3/x}}{4+x}-\frac {45}{16} e^{3/4} \text {Ei}\left (-\frac {3 (4+x)}{4 x}\right )+\frac {45}{64} \operatorname {Subst}\left (\int \frac {e^{\frac {3}{4}-\frac {3 x}{4}}}{x} \, dx,x,\frac {4+x}{x}\right )+\frac {135}{64} \operatorname {Subst}\left (\int \frac {e^{\frac {3}{4}-\frac {3 x}{4}}}{x} \, dx,x,\frac {4+x}{x}\right )\\ &=-5 e^{-3/x}+e^x+e^{x^2}-\frac {28}{4+x}+\frac {35 e^{-3/x}}{4+x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.26, size = 33, normalized size = 1.06 \begin {gather*} e^x+e^{x^2}-\frac {28}{4+x}-\frac {5 e^{-3/x} (-3+x)}{4+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 53, normalized size = 1.71 \begin {gather*} \frac {{\left ({\left (x + 4\right )} e^{\left (\frac {x^{3} + 3}{x}\right )} + {\left (x + 4\right )} e^{\left (\frac {x^{2} + 3}{x}\right )} - 5 \, x - 28 \, e^{\frac {3}{x}} + 15\right )} e^{\left (-\frac {3}{x}\right )}}{x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 45, normalized size = 1.45 \begin {gather*} \frac {x e^{\left (x^{2}\right )} + x e^{x} - 5 \, x e^{\left (-\frac {3}{x}\right )} + 4 \, e^{\left (x^{2}\right )} + 4 \, e^{x} + 15 \, e^{\left (-\frac {3}{x}\right )} - 28}{x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.21, size = 31, normalized size = 1.00
method | result | size |
risch | \(-\frac {28}{4+x}+{\mathrm e}^{x}+{\mathrm e}^{x^{2}}-\frac {5 \left (x -3\right ) {\mathrm e}^{-\frac {3}{x}}}{4+x}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 33, normalized size = 1.06 \begin {gather*} \frac {{\left (x + 4\right )} e^{\left (x^{2}\right )} + {\left (x + 4\right )} e^{x} - 5 \, {\left (x - 3\right )} e^{\left (-\frac {3}{x}\right )} - 28}{x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.53, size = 32, normalized size = 1.03 \begin {gather*} {\mathrm {e}}^{x^2}+{\mathrm {e}}^x-\frac {28}{x+4}-\frac {{\mathrm {e}}^{-\frac {3}{x}}\,\left (5\,x-15\right )}{x+4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.61, size = 26, normalized size = 0.84 \begin {gather*} \frac {\left (15 - 5 x\right ) e^{- \frac {3}{x}}}{x + 4} + e^{x} + e^{x^{2}} - \frac {28}{x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________