Optimal. Leaf size=29 \[ \frac {3 e^{-1+\frac {3}{x}} \left (\frac {5}{3}+\frac {x}{2}\right )}{x}-x^4 \]
________________________________________________________________________________________
Rubi [A] time = 0.54, antiderivative size = 33, normalized size of antiderivative = 1.14, number of steps used = 9, number of rules used = 5, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.139, Rules used = {12, 6741, 6742, 2212, 2209} \begin {gather*} -x^4+\frac {3}{2} e^{\frac {3}{x}-1}+\frac {5 e^{\frac {3}{x}-1}}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2209
Rule 2212
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {e^{-\frac {-3+x}{x}} \left (-30-19 x-8 e^{\frac {-3+x}{x}} x^6\right )}{x^3} \, dx\\ &=\frac {1}{2} \int \frac {e^{-1+\frac {3}{x}} \left (-30-19 x-8 e^{\frac {-3+x}{x}} x^6\right )}{x^3} \, dx\\ &=\frac {1}{2} \int \left (\frac {e^{-1+\frac {3}{x}} (-30-19 x)}{x^3}-8 x^3\right ) \, dx\\ &=-x^4+\frac {1}{2} \int \frac {e^{-1+\frac {3}{x}} (-30-19 x)}{x^3} \, dx\\ &=-x^4+\frac {1}{2} \int \left (-\frac {30 e^{-1+\frac {3}{x}}}{x^3}-\frac {19 e^{-1+\frac {3}{x}}}{x^2}\right ) \, dx\\ &=-x^4-\frac {19}{2} \int \frac {e^{-1+\frac {3}{x}}}{x^2} \, dx-15 \int \frac {e^{-1+\frac {3}{x}}}{x^3} \, dx\\ &=\frac {19}{6} e^{-1+\frac {3}{x}}+\frac {5 e^{-1+\frac {3}{x}}}{x}-x^4+5 \int \frac {e^{-1+\frac {3}{x}}}{x^2} \, dx\\ &=\frac {3}{2} e^{-1+\frac {3}{x}}+\frac {5 e^{-1+\frac {3}{x}}}{x}-x^4\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 33, normalized size = 1.14 \begin {gather*} \frac {3}{2} e^{-1+\frac {3}{x}}+\frac {5 e^{-1+\frac {3}{x}}}{x}-x^4 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 2.42, size = 32, normalized size = 1.10 \begin {gather*} -\frac {{\left (2 \, x^{5} e^{\left (\frac {x - 3}{x}\right )} - 3 \, x - 10\right )} e^{\left (-\frac {x - 3}{x}\right )}}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 34, normalized size = 1.17 \begin {gather*} \frac {1}{2} \, x^{4} {\left (\frac {3 \, e^{\frac {3}{x}}}{x^{4}} + \frac {10 \, e^{\frac {3}{x}}}{x^{5}} - 2 \, e\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 26, normalized size = 0.90
method | result | size |
risch | \(-x^{4}+\frac {\left (3 x +10\right ) {\mathrm e}^{-\frac {x -3}{x}}}{2 x}\) | \(26\) |
derivativedivides | \(-x^{4}-\frac {5 \,{\mathrm e}^{\frac {3}{x}-1} \left (1-\frac {3}{x}\right )}{3}+\frac {19 \,{\mathrm e}^{\frac {3}{x}-1}}{6}\) | \(36\) |
default | \(-x^{4}-\frac {5 \,{\mathrm e}^{\frac {3}{x}-1} \left (1-\frac {3}{x}\right )}{3}+\frac {19 \,{\mathrm e}^{\frac {3}{x}-1}}{6}\) | \(36\) |
norman | \(\frac {\left (5 x +\frac {3 x^{2}}{2}-x^{6} {\mathrm e}^{\frac {x -3}{x}}\right ) {\mathrm e}^{-\frac {x -3}{x}}}{x^{2}}\) | \(37\) |
meijerg | \(\frac {5 \,{\mathrm e}^{-\frac {3 \,{\mathrm e}^{-1}}{x}+1+\frac {3}{x}} \left (1-\frac {\left (2-\frac {6 \,{\mathrm e}^{-1}}{x}\right ) {\mathrm e}^{\frac {3 \,{\mathrm e}^{-1}}{x}}}{2}\right )}{3}+324 \,{\mathrm e}^{\frac {3}{x}-\frac {3 \,{\mathrm e}^{-1}}{x}-4} \left (1-{\mathrm e}\right )^{4} \left (-\frac {x^{4} {\mathrm e}^{4}}{324 \left (1-{\mathrm e}\right )^{4}}-\frac {x^{3} {\mathrm e}^{3}}{81 \left (1-{\mathrm e}\right )^{3}}-\frac {x^{2} {\mathrm e}^{2}}{36 \left (1-{\mathrm e}\right )^{2}}-\frac {x \,{\mathrm e}}{18 \left (1-{\mathrm e}\right )}-\frac {37}{288}-\frac {\ln \relax (x )}{24}+\frac {\ln \relax (3)}{24}+\frac {i \pi }{24}+\frac {\ln \left (1-{\mathrm e}\right )}{24}+\frac {x^{4} {\mathrm e}^{4} \left (\frac {10125 \,{\mathrm e}^{-4} \left (1-{\mathrm e}\right )^{4}}{x^{4}}+\frac {6480 \,{\mathrm e}^{-3} \left (1-{\mathrm e}\right )^{3}}{x^{3}}+\frac {3240 \,{\mathrm e}^{-2} \left (1-{\mathrm e}\right )^{2}}{x^{2}}+\frac {1440 \,{\mathrm e}^{-1} \left (1-{\mathrm e}\right )}{x}+360\right )}{116640 \left (1-{\mathrm e}\right )^{4}}-\frac {x^{4} {\mathrm e}^{4+\frac {3 \,{\mathrm e}^{-1} \left (1-{\mathrm e}\right )}{x}} \left (\frac {135 \,{\mathrm e}^{-3} \left (1-{\mathrm e}\right )^{3}}{x^{3}}+\frac {45 \,{\mathrm e}^{-2} \left (1-{\mathrm e}\right )^{2}}{x^{2}}+\frac {30 \,{\mathrm e}^{-1} \left (1-{\mathrm e}\right )}{x}+30\right )}{9720 \left (1-{\mathrm e}\right )^{4}}-\frac {\ln \left (-\frac {3 \,{\mathrm e}^{-1} \left (1-{\mathrm e}\right )}{x}\right )}{24}-\frac {\expIntegralEi \left (1, -\frac {3 \,{\mathrm e}^{-1} \left (1-{\mathrm e}\right )}{x}\right )}{24}\right )-\frac {19 \,{\mathrm e}^{\frac {3}{x}-\frac {3 \,{\mathrm e}^{-1}}{x}} \left (1-{\mathrm e}^{\frac {3 \,{\mathrm e}^{-1}}{x}}\right )}{6}\) | \(356\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.38, size = 27, normalized size = 0.93 \begin {gather*} -x^{4} - \frac {5}{3} \, e^{\left (-1\right )} \Gamma \left (2, -\frac {3}{x}\right ) + \frac {19}{6} \, e^{\left (\frac {3}{x} - 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.76, size = 29, normalized size = 1.00 \begin {gather*} \frac {3\,{\mathrm {e}}^{-1}\,{\mathrm {e}}^{3/x}}{2}-x^4+\frac {5\,{\mathrm {e}}^{-1}\,{\mathrm {e}}^{3/x}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 17, normalized size = 0.59 \begin {gather*} - x^{4} + \frac {\left (3 x + 10\right ) e^{- \frac {x - 3}{x}}}{2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________