Optimal. Leaf size=42 \[ \frac {2}{\left (4+\frac {5}{4+e^{e^{2 x}}}\right ) \left (-2 x+\frac {1}{3} \left (-x+x \left (\frac {3}{x}+x\right )\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 4.14, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {3528+e^{2 e^{2 x}} (168-48 x)-1008 x+e^{e^{2 x}} \left (1554-444 x+e^{2 x} \left (180-420 x+60 x^2\right )\right )}{3969-18522 x+24255 x^2-6174 x^3+441 x^4+e^{2 e^{2 x}} \left (144-672 x+880 x^2-224 x^3+16 x^4\right )+e^{e^{2 x}} \left (1512-7056 x+9240 x^2-2352 x^3+168 x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {6 \left (-84 (-7+2 x)-37 e^{e^{2 x}} (-7+2 x)-4 e^{2 e^{2 x}} (-7+2 x)+10 e^{e^{2 x}+2 x} \left (3-7 x+x^2\right )\right )}{\left (21+4 e^{e^{2 x}}\right )^2 \left (3-7 x+x^2\right )^2} \, dx\\ &=6 \int \frac {-84 (-7+2 x)-37 e^{e^{2 x}} (-7+2 x)-4 e^{2 e^{2 x}} (-7+2 x)+10 e^{e^{2 x}+2 x} \left (3-7 x+x^2\right )}{\left (21+4 e^{e^{2 x}}\right )^2 \left (3-7 x+x^2\right )^2} \, dx\\ &=6 \int \left (-\frac {84 (-7+2 x)}{\left (21+4 e^{e^{2 x}}\right )^2 \left (3-7 x+x^2\right )^2}-\frac {37 e^{e^{2 x}} (-7+2 x)}{\left (21+4 e^{e^{2 x}}\right )^2 \left (3-7 x+x^2\right )^2}-\frac {4 e^{2 e^{2 x}} (-7+2 x)}{\left (21+4 e^{e^{2 x}}\right )^2 \left (3-7 x+x^2\right )^2}+\frac {10 e^{e^{2 x}+2 x}}{\left (21+4 e^{e^{2 x}}\right )^2 \left (3-7 x+x^2\right )}\right ) \, dx\\ &=-\left (24 \int \frac {e^{2 e^{2 x}} (-7+2 x)}{\left (21+4 e^{e^{2 x}}\right )^2 \left (3-7 x+x^2\right )^2} \, dx\right )+60 \int \frac {e^{e^{2 x}+2 x}}{\left (21+4 e^{e^{2 x}}\right )^2 \left (3-7 x+x^2\right )} \, dx-222 \int \frac {e^{e^{2 x}} (-7+2 x)}{\left (21+4 e^{e^{2 x}}\right )^2 \left (3-7 x+x^2\right )^2} \, dx-504 \int \frac {-7+2 x}{\left (21+4 e^{e^{2 x}}\right )^2 \left (3-7 x+x^2\right )^2} \, dx\\ &=-\left (24 \int \left (-\frac {7 e^{2 e^{2 x}}}{\left (21+4 e^{e^{2 x}}\right )^2 \left (3-7 x+x^2\right )^2}+\frac {2 e^{2 e^{2 x}} x}{\left (21+4 e^{e^{2 x}}\right )^2 \left (3-7 x+x^2\right )^2}\right ) \, dx\right )+60 \int \left (-\frac {2 e^{e^{2 x}+2 x}}{\sqrt {37} \left (21+4 e^{e^{2 x}}\right )^2 \left (7+\sqrt {37}-2 x\right )}-\frac {2 e^{e^{2 x}+2 x}}{\sqrt {37} \left (21+4 e^{e^{2 x}}\right )^2 \left (-7+\sqrt {37}+2 x\right )}\right ) \, dx-222 \int \left (-\frac {7 e^{e^{2 x}}}{\left (21+4 e^{e^{2 x}}\right )^2 \left (3-7 x+x^2\right )^2}+\frac {2 e^{e^{2 x}} x}{\left (21+4 e^{e^{2 x}}\right )^2 \left (3-7 x+x^2\right )^2}\right ) \, dx-504 \int \left (-\frac {7}{\left (21+4 e^{e^{2 x}}\right )^2 \left (3-7 x+x^2\right )^2}+\frac {2 x}{\left (21+4 e^{e^{2 x}}\right )^2 \left (3-7 x+x^2\right )^2}\right ) \, dx\\ &=-\left (48 \int \frac {e^{2 e^{2 x}} x}{\left (21+4 e^{e^{2 x}}\right )^2 \left (3-7 x+x^2\right )^2} \, dx\right )+168 \int \frac {e^{2 e^{2 x}}}{\left (21+4 e^{e^{2 x}}\right )^2 \left (3-7 x+x^2\right )^2} \, dx-444 \int \frac {e^{e^{2 x}} x}{\left (21+4 e^{e^{2 x}}\right )^2 \left (3-7 x+x^2\right )^2} \, dx-1008 \int \frac {x}{\left (21+4 e^{e^{2 x}}\right )^2 \left (3-7 x+x^2\right )^2} \, dx+1554 \int \frac {e^{e^{2 x}}}{\left (21+4 e^{e^{2 x}}\right )^2 \left (3-7 x+x^2\right )^2} \, dx+3528 \int \frac {1}{\left (21+4 e^{e^{2 x}}\right )^2 \left (3-7 x+x^2\right )^2} \, dx-\frac {120 \int \frac {e^{e^{2 x}+2 x}}{\left (21+4 e^{e^{2 x}}\right )^2 \left (7+\sqrt {37}-2 x\right )} \, dx}{\sqrt {37}}-\frac {120 \int \frac {e^{e^{2 x}+2 x}}{\left (21+4 e^{e^{2 x}}\right )^2 \left (-7+\sqrt {37}+2 x\right )} \, dx}{\sqrt {37}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 34, normalized size = 0.81 \begin {gather*} \frac {6 \left (4+e^{e^{2 x}}\right )}{\left (21+4 e^{e^{2 x}}\right ) \left (3-7 x+x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.40, size = 36, normalized size = 0.86 \begin {gather*} \frac {6 \, {\left (e^{\left (e^{\left (2 \, x\right )}\right )} + 4\right )}}{21 \, x^{2} + 4 \, {\left (x^{2} - 7 \, x + 3\right )} e^{\left (e^{\left (2 \, x\right )}\right )} - 147 \, x + 63} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 46, normalized size = 1.10 \begin {gather*} \frac {6 \, {\left (e^{\left (e^{\left (2 \, x\right )}\right )} + 4\right )}}{4 \, x^{2} e^{\left (e^{\left (2 \, x\right )}\right )} + 21 \, x^{2} - 28 \, x e^{\left (e^{\left (2 \, x\right )}\right )} - 147 \, x + 12 \, e^{\left (e^{\left (2 \, x\right )}\right )} + 63} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 37, normalized size = 0.88
method | result | size |
risch | \(\frac {3}{2 \left (x^{2}-7 x +3\right )}-\frac {15}{2 \left (x^{2}-7 x +3\right ) \left (4 \,{\mathrm e}^{{\mathrm e}^{2 x}}+21\right )}\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 36, normalized size = 0.86 \begin {gather*} \frac {6 \, {\left (e^{\left (e^{\left (2 \, x\right )}\right )} + 4\right )}}{21 \, x^{2} + 4 \, {\left (x^{2} - 7 \, x + 3\right )} e^{\left (e^{\left (2 \, x\right )}\right )} - 147 \, x + 63} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.78, size = 30, normalized size = 0.71 \begin {gather*} \frac {6\,\left ({\mathrm {e}}^{{\mathrm {e}}^{2\,x}}+4\right )}{\left (4\,{\mathrm {e}}^{{\mathrm {e}}^{2\,x}}+21\right )\,\left (x^2-7\,x+3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 39, normalized size = 0.93 \begin {gather*} - \frac {15}{42 x^{2} - 294 x + \left (8 x^{2} - 56 x + 24\right ) e^{e^{2 x}} + 126} + \frac {3}{2 x^{2} - 14 x + 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________