Optimal. Leaf size=21 \[ -\frac {x \log (4) (x-\log (x)+\log (4 x))}{10 \log (2)} \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 42, normalized size of antiderivative = 2.00, number of steps used = 4, number of rules used = 2, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {12, 2295} \begin {gather*} -\frac {x^2 \log (4)}{10 \log (2)}+\frac {x \log (4) \log (x)}{10 \log (2)}-\frac {x \log (4) \log (4 x)}{10 \log (2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2295
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int (-2 x \log (4)+\log (4) \log (x)-\log (4) \log (4 x)) \, dx}{10 \log (2)}\\ &=-\frac {x^2 \log (4)}{10 \log (2)}+\frac {\log (4) \int \log (x) \, dx}{10 \log (2)}-\frac {\log (4) \int \log (4 x) \, dx}{10 \log (2)}\\ &=-\frac {x^2 \log (4)}{10 \log (2)}+\frac {x \log (4) \log (x)}{10 \log (2)}-\frac {x \log (4) \log (4 x)}{10 \log (2)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 16, normalized size = 0.76 \begin {gather*} -\frac {\log (4) \left (x^2+x \log (4)\right )}{\log (1024)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.99, size = 11, normalized size = 0.52 \begin {gather*} -\frac {1}{5} \, x^{2} - \frac {2}{5} \, x \log \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.20, size = 38, normalized size = 1.81 \begin {gather*} -\frac {x^{2} \log \relax (2) + {\left (x \log \left (4 \, x\right ) - x\right )} \log \relax (2) - {\left (x \log \relax (x) - x\right )} \log \relax (2)}{5 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 12, normalized size = 0.57
method | result | size |
risch | \(-\frac {2 x \ln \relax (2)}{5}-\frac {x^{2}}{5}\) | \(12\) |
norman | \(-\frac {x^{2}}{5}+\frac {x \ln \relax (x )}{5}-\frac {x \ln \left (4 x \right )}{5}\) | \(19\) |
default | \(\frac {x \ln \relax (2) \ln \relax (x )-x^{2} \ln \relax (2)-\ln \relax (2) \ln \left (4 x \right ) x}{5 \ln \relax (2)}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.37, size = 38, normalized size = 1.81 \begin {gather*} -\frac {x^{2} \log \relax (2) + {\left (x \log \left (4 \, x\right ) - x\right )} \log \relax (2) - {\left (x \log \relax (x) - x\right )} \log \relax (2)}{5 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.60, size = 7, normalized size = 0.33 \begin {gather*} -\frac {x\,\left (x+\ln \relax (4)\right )}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.06, size = 14, normalized size = 0.67 \begin {gather*} - \frac {x^{2}}{5} - \frac {2 x \log {\relax (2 )}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________