Optimal. Leaf size=27 \[ 4+x+\frac {5}{2} x^2 \left (-4-x-\frac {x}{\log \left (\log \left (\frac {x}{3}\right )\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.24, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {5 x^2-15 x^2 \log \left (\frac {x}{3}\right ) \log \left (\log \left (\frac {x}{3}\right )\right )+\left (2-40 x-15 x^2\right ) \log \left (\frac {x}{3}\right ) \log ^2\left (\log \left (\frac {x}{3}\right )\right )}{2 \log \left (\frac {x}{3}\right ) \log ^2\left (\log \left (\frac {x}{3}\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {5 x^2-15 x^2 \log \left (\frac {x}{3}\right ) \log \left (\log \left (\frac {x}{3}\right )\right )+\left (2-40 x-15 x^2\right ) \log \left (\frac {x}{3}\right ) \log ^2\left (\log \left (\frac {x}{3}\right )\right )}{\log \left (\frac {x}{3}\right ) \log ^2\left (\log \left (\frac {x}{3}\right )\right )} \, dx\\ &=\frac {1}{2} \int \left (2-40 x-15 x^2+\frac {5 x^2}{\log \left (\frac {x}{3}\right ) \log ^2\left (\log \left (\frac {x}{3}\right )\right )}-\frac {15 x^2}{\log \left (\log \left (\frac {x}{3}\right )\right )}\right ) \, dx\\ &=x-10 x^2-\frac {5 x^3}{2}+\frac {5}{2} \int \frac {x^2}{\log \left (\frac {x}{3}\right ) \log ^2\left (\log \left (\frac {x}{3}\right )\right )} \, dx-\frac {15}{2} \int \frac {x^2}{\log \left (\log \left (\frac {x}{3}\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 30, normalized size = 1.11 \begin {gather*} x-10 x^2-\frac {5 x^3}{2}-\frac {5 x^3}{2 \log \left (\log \left (\frac {x}{3}\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.87, size = 35, normalized size = 1.30 \begin {gather*} -\frac {5 \, x^{3} + {\left (5 \, x^{3} + 20 \, x^{2} - 2 \, x\right )} \log \left (\log \left (\frac {1}{3} \, x\right )\right )}{2 \, \log \left (\log \left (\frac {1}{3} \, x\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 24, normalized size = 0.89 \begin {gather*} -\frac {5}{2} \, x^{3} - 10 \, x^{2} - \frac {5 \, x^{3}}{2 \, \log \left (\log \left (\frac {1}{3} \, x\right )\right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 25, normalized size = 0.93
method | result | size |
risch | \(-\frac {5 x^{3}}{2}-10 x^{2}+x -\frac {5 x^{3}}{2 \ln \left (\ln \left (\frac {x}{3}\right )\right )}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 27, normalized size = 1.00 \begin {gather*} -\frac {5}{2} \, x^{3} - 10 \, x^{2} - \frac {5 \, x^{3}}{2 \, \log \left (-\log \relax (3) + \log \relax (x)\right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.93, size = 27, normalized size = 1.00 \begin {gather*} x-\frac {5\,x^3}{2\,\ln \left (\ln \relax (x)-\ln \relax (3)\right )}-10\,x^2-\frac {5\,x^3}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 26, normalized size = 0.96 \begin {gather*} - \frac {5 x^{3}}{2} - \frac {5 x^{3}}{2 \log {\left (\log {\left (\frac {x}{3} \right )} \right )}} - 10 x^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________