Optimal. Leaf size=30 \[ e^3 x+\frac {e^3 x}{(-5+x) \left (-x^2+\log (3 (3+x))\right )} \]
________________________________________________________________________________________
Rubi [F] time = 50.46, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^3 \left (5 x-16 x^2+x^3+2 x^4+(-15-5 x) \log (9+3 x)+\frac {\left (-x^2+\log (9+3 x)\right ) \left (e^3 \left (-75 x^2+5 x^3+7 x^4-x^5\right )+e^3 \left (75-5 x-7 x^2+x^3\right ) \log (9+3 x)\right )}{e^3}\right )}{\left (-x^2+\log (9+3 x)\right ) \left (-75 x^2+5 x^3+7 x^4-x^5+\left (75-5 x-7 x^2+x^3\right ) \log (9+3 x)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^3 \int \frac {5 x-16 x^2+x^3+2 x^4+(-15-5 x) \log (9+3 x)+\frac {\left (-x^2+\log (9+3 x)\right ) \left (e^3 \left (-75 x^2+5 x^3+7 x^4-x^5\right )+e^3 \left (75-5 x-7 x^2+x^3\right ) \log (9+3 x)\right )}{e^3}}{\left (-x^2+\log (9+3 x)\right ) \left (-75 x^2+5 x^3+7 x^4-x^5+\left (75-5 x-7 x^2+x^3\right ) \log (9+3 x)\right )} \, dx\\ &=e^3 \int \frac {x \left (5-16 x+x^2+77 x^3-5 x^4-7 x^5+x^6\right )-\left (15+5 x+150 x^2-10 x^3-14 x^4+2 x^5\right ) \log (3 (3+x))+(-5+x)^2 (3+x) \log ^2(3 (3+x))}{(5-x)^2 (3+x) \left (x^2-\log (9+3 x)\right )^2} \, dx\\ &=e^3 \int \left (\frac {-5 x+16 x^2-x^3-77 x^4+5 x^5+7 x^6-x^7+15 \log (3 (3+x))+5 x \log (3 (3+x))+150 x^2 \log (3 (3+x))-10 x^3 \log (3 (3+x))-14 x^4 \log (3 (3+x))+2 x^5 \log (3 (3+x))-75 \log ^2(3 (3+x))+5 x \log ^2(3 (3+x))+7 x^2 \log ^2(3 (3+x))-x^3 \log ^2(3 (3+x))}{64 (-5+x) \left (x^2-\log (9+3 x)\right )^2}+\frac {5 x-16 x^2+x^3+77 x^4-5 x^5-7 x^6+x^7-15 \log (3 (3+x))-5 x \log (3 (3+x))-150 x^2 \log (3 (3+x))+10 x^3 \log (3 (3+x))+14 x^4 \log (3 (3+x))-2 x^5 \log (3 (3+x))+75 \log ^2(3 (3+x))-5 x \log ^2(3 (3+x))-7 x^2 \log ^2(3 (3+x))+x^3 \log ^2(3 (3+x))}{8 (-5+x)^2 \left (x^2-\log (9+3 x)\right )^2}+\frac {5 x-16 x^2+x^3+77 x^4-5 x^5-7 x^6+x^7-15 \log (3 (3+x))-5 x \log (3 (3+x))-150 x^2 \log (3 (3+x))+10 x^3 \log (3 (3+x))+14 x^4 \log (3 (3+x))-2 x^5 \log (3 (3+x))+75 \log ^2(3 (3+x))-5 x \log ^2(3 (3+x))-7 x^2 \log ^2(3 (3+x))+x^3 \log ^2(3 (3+x))}{64 (3+x) \left (x^2-\log (9+3 x)\right )^2}\right ) \, dx\\ &=\frac {1}{64} e^3 \int \frac {-5 x+16 x^2-x^3-77 x^4+5 x^5+7 x^6-x^7+15 \log (3 (3+x))+5 x \log (3 (3+x))+150 x^2 \log (3 (3+x))-10 x^3 \log (3 (3+x))-14 x^4 \log (3 (3+x))+2 x^5 \log (3 (3+x))-75 \log ^2(3 (3+x))+5 x \log ^2(3 (3+x))+7 x^2 \log ^2(3 (3+x))-x^3 \log ^2(3 (3+x))}{(-5+x) \left (x^2-\log (9+3 x)\right )^2} \, dx+\frac {1}{64} e^3 \int \frac {5 x-16 x^2+x^3+77 x^4-5 x^5-7 x^6+x^7-15 \log (3 (3+x))-5 x \log (3 (3+x))-150 x^2 \log (3 (3+x))+10 x^3 \log (3 (3+x))+14 x^4 \log (3 (3+x))-2 x^5 \log (3 (3+x))+75 \log ^2(3 (3+x))-5 x \log ^2(3 (3+x))-7 x^2 \log ^2(3 (3+x))+x^3 \log ^2(3 (3+x))}{(3+x) \left (x^2-\log (9+3 x)\right )^2} \, dx+\frac {1}{8} e^3 \int \frac {5 x-16 x^2+x^3+77 x^4-5 x^5-7 x^6+x^7-15 \log (3 (3+x))-5 x \log (3 (3+x))-150 x^2 \log (3 (3+x))+10 x^3 \log (3 (3+x))+14 x^4 \log (3 (3+x))-2 x^5 \log (3 (3+x))+75 \log ^2(3 (3+x))-5 x \log ^2(3 (3+x))-7 x^2 \log ^2(3 (3+x))+x^3 \log ^2(3 (3+x))}{(-5+x)^2 \left (x^2-\log (9+3 x)\right )^2} \, dx\\ &=\frac {1}{64} e^3 \int \frac {x \left (5-16 x+x^2+77 x^3-5 x^4-7 x^5+x^6\right )-\left (15+5 x+150 x^2-10 x^3-14 x^4+2 x^5\right ) \log (3 (3+x))+(-5+x)^2 (3+x) \log ^2(3 (3+x))}{(5-x) \left (x^2-\log (9+3 x)\right )^2} \, dx+\frac {1}{64} e^3 \int \frac {x \left (5-16 x+x^2+77 x^3-5 x^4-7 x^5+x^6\right )-\left (15+5 x+150 x^2-10 x^3-14 x^4+2 x^5\right ) \log (3 (3+x))+(-5+x)^2 (3+x) \log ^2(3 (3+x))}{(3+x) \left (x^2-\log (9+3 x)\right )^2} \, dx+\frac {1}{8} e^3 \int \frac {x \left (5-16 x+x^2+77 x^3-5 x^4-7 x^5+x^6\right )-\left (15+5 x+150 x^2-10 x^3-14 x^4+2 x^5\right ) \log (3 (3+x))+(-5+x)^2 (3+x) \log ^2(3 (3+x))}{(5-x)^2 \left (x^2-\log (9+3 x)\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 27, normalized size = 0.90 \begin {gather*} e^3 \left (x+\frac {x}{(-5+x) \left (-x^2+\log (3 (3+x))\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 57, normalized size = 1.90 \begin {gather*} -\frac {{\left (x^{2} - 5 \, x\right )} e^{3} \log \left (3 \, x + 9\right ) - {\left (x^{4} - 5 \, x^{3} - x\right )} e^{3}}{x^{3} - 5 \, x^{2} - {\left (x - 5\right )} \log \left (3 \, x + 9\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.20, size = 89, normalized size = 2.97 \begin {gather*} \frac {x^{4} e^{3} - 5 \, x^{3} e^{3} - x^{2} e^{3} \log \relax (3) - x^{2} e^{3} \log \left (x + 3\right ) + 5 \, x e^{3} \log \relax (3) + 5 \, x e^{3} \log \left (x + 3\right ) - x e^{3}}{x^{3} - 5 \, x^{2} - x \log \relax (3) - x \log \left (x + 3\right ) + 5 \, \log \relax (3) + 5 \, \log \left (x + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.41, size = 30, normalized size = 1.00
method | result | size |
risch | \(x \,{\mathrm e}^{3}-\frac {x \,{\mathrm e}^{3}}{\left (x^{2}-\ln \left (3 x +9\right )\right ) \left (x -5\right )}\) | \(30\) |
default | \(\frac {\left (3 x +9\right ) {\mathrm e}^{3}}{3}-\frac {x \,{\mathrm e}^{3}}{\left (x^{2}-\ln \left (3 x +9\right )\right ) \left (x -5\right )}\) | \(35\) |
norman | \(\frac {x^{4} {\mathrm e}^{3}-25 x^{2} {\mathrm e}^{3}+25 \,{\mathrm e}^{3} \ln \left (3 x +9\right )-{\mathrm e}^{3} x^{2} \ln \left (3 x +9\right )-x \,{\mathrm e}^{3}}{\left (x^{2}-\ln \left (3 x +9\right )\right ) \left (x -5\right )}\) | \(63\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.48, size = 69, normalized size = 2.30 \begin {gather*} \frac {{\left (x^{4} - 5 \, x^{3} - x^{2} \log \relax (3) + x {\left (5 \, \log \relax (3) - 1\right )} - {\left (x^{2} - 5 \, x\right )} \log \left (x + 3\right )\right )} e^{3}}{x^{3} - 5 \, x^{2} - x \log \relax (3) - {\left (x - 5\right )} \log \left (x + 3\right ) + 5 \, \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.79, size = 51, normalized size = 1.70 \begin {gather*} \frac {x\,{\mathrm {e}}^3\,\left (x\,\ln \left (3\,x+9\right )-5\,\ln \left (3\,x+9\right )+5\,x^2-x^3+1\right )}{\left (\ln \left (3\,x+9\right )-x^2\right )\,\left (x-5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 27, normalized size = 0.90 \begin {gather*} x e^{3} + \frac {x e^{3}}{- x^{3} + 5 x^{2} + \left (x - 5\right ) \log {\left (3 x + 9 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________