Optimal. Leaf size=33 \[ \frac {1-\frac {e^4}{x^2}-x-x^2}{9-x+\frac {5}{\log (\log (x))}} \]
________________________________________________________________________________________
Rubi [F] time = 8.12, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-5 e^4+5 x^2-5 x^3-5 x^4+\left (10 e^4-5 x^3-10 x^4\right ) \log (x) \log (\log (x))+\left (e^4 (18-3 x)-8 x^3-18 x^4+x^5\right ) \log (x) \log ^2(\log (x))}{25 x^3 \log (x)+\left (90 x^3-10 x^4\right ) \log (x) \log (\log (x))+\left (81 x^3-18 x^4+x^5\right ) \log (x) \log ^2(\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-5 \left (e^4+x^2 \left (-1+x+x^2\right )\right )+\log (x) \log (\log (x)) \left (10 e^4-5 x^3 (1+2 x)+\left (-3 e^4 (-6+x)+x^3 \left (-8-18 x+x^2\right )\right ) \log (\log (x))\right )}{x^3 \log (x) (5-(-9+x) \log (\log (x)))^2} \, dx\\ &=\int \left (\frac {18 e^4-3 e^4 x-8 x^3-18 x^4+x^5}{(-9+x)^2 x^3}-\frac {5 \left (e^4-x^2+x^3+x^4\right ) \left (81-18 x+x^2+5 x \log (x)\right )}{(-9+x)^2 x^3 \log (x) (-5-9 \log (\log (x))+x \log (\log (x)))^2}-\frac {5 \left (-18 e^4+4 e^4 x+7 x^3+19 x^4\right )}{(-9+x)^2 x^3 (-5-9 \log (\log (x))+x \log (\log (x)))}\right ) \, dx\\ &=-\left (5 \int \frac {\left (e^4-x^2+x^3+x^4\right ) \left (81-18 x+x^2+5 x \log (x)\right )}{(-9+x)^2 x^3 \log (x) (-5-9 \log (\log (x))+x \log (\log (x)))^2} \, dx\right )-5 \int \frac {-18 e^4+4 e^4 x+7 x^3+19 x^4}{(-9+x)^2 x^3 (-5-9 \log (\log (x))+x \log (\log (x)))} \, dx+\int \frac {18 e^4-3 e^4 x-8 x^3-18 x^4+x^5}{(-9+x)^2 x^3} \, dx\\ &=-\left (5 \int \left (\frac {\left (7209+e^4\right ) \left (81-18 x+x^2+5 x \log (x)\right )}{729 (-9+x)^2 \log (x) (-5-9 \log (\log (x))+x \log (\log (x)))^2}-\frac {\left (-2214+e^4\right ) \left (81-18 x+x^2+5 x \log (x)\right )}{2187 (-9+x) \log (x) (-5-9 \log (\log (x))+x \log (\log (x)))^2}+\frac {e^4 \left (81-18 x+x^2+5 x \log (x)\right )}{81 x^3 \log (x) (-5-9 \log (\log (x))+x \log (\log (x)))^2}+\frac {2 e^4 \left (81-18 x+x^2+5 x \log (x)\right )}{729 x^2 \log (x) (-5-9 \log (\log (x))+x \log (\log (x)))^2}+\frac {\left (-27+e^4\right ) \left (81-18 x+x^2+5 x \log (x)\right )}{2187 x \log (x) (-5-9 \log (\log (x))+x \log (\log (x)))^2}\right ) \, dx\right )-5 \int \left (\frac {2 \left (7209+e^4\right )}{81 (-9+x)^2 (-5-9 \log (\log (x))+x \log (\log (x)))}+\frac {13851-2 e^4}{729 (-9+x) (-5-9 \log (\log (x))+x \log (\log (x)))}-\frac {2 e^4}{9 x^3 (-5-9 \log (\log (x))+x \log (\log (x)))}+\frac {2 e^4}{729 x (-5-9 \log (\log (x))+x \log (\log (x)))}\right ) \, dx+\int \left (1+\frac {-7209-e^4}{81 (-9+x)^2}+\frac {2 e^4}{9 x^3}+\frac {e^4}{81 x^2}\right ) \, dx\\ &=-\frac {7209+e^4}{81 (9-x)}-\frac {e^4}{9 x^2}-\frac {e^4}{81 x}+x-\frac {1}{729} \left (10 e^4\right ) \int \frac {81-18 x+x^2+5 x \log (x)}{x^2 \log (x) (-5-9 \log (\log (x))+x \log (\log (x)))^2} \, dx-\frac {1}{729} \left (10 e^4\right ) \int \frac {1}{x (-5-9 \log (\log (x))+x \log (\log (x)))} \, dx-\frac {1}{81} \left (5 e^4\right ) \int \frac {81-18 x+x^2+5 x \log (x)}{x^3 \log (x) (-5-9 \log (\log (x))+x \log (\log (x)))^2} \, dx+\frac {1}{9} \left (10 e^4\right ) \int \frac {1}{x^3 (-5-9 \log (\log (x))+x \log (\log (x)))} \, dx-\frac {1}{729} \left (5 \left (13851-2 e^4\right )\right ) \int \frac {1}{(-9+x) (-5-9 \log (\log (x))+x \log (\log (x)))} \, dx+\frac {\left (5 \left (27-e^4\right )\right ) \int \frac {81-18 x+x^2+5 x \log (x)}{x \log (x) (-5-9 \log (\log (x))+x \log (\log (x)))^2} \, dx}{2187}-\frac {\left (5 \left (2214-e^4\right )\right ) \int \frac {81-18 x+x^2+5 x \log (x)}{(-9+x) \log (x) (-5-9 \log (\log (x))+x \log (\log (x)))^2} \, dx}{2187}-\frac {1}{729} \left (5 \left (7209+e^4\right )\right ) \int \frac {81-18 x+x^2+5 x \log (x)}{(-9+x)^2 \log (x) (-5-9 \log (\log (x))+x \log (\log (x)))^2} \, dx-\frac {1}{81} \left (10 \left (7209+e^4\right )\right ) \int \frac {1}{(-9+x)^2 (-5-9 \log (\log (x))+x \log (\log (x)))} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 41, normalized size = 1.24 \begin {gather*} \frac {50 x^2+\left (e^4+x^2 \left (89-9 x+x^2\right )\right ) \log (\log (x))}{x^2 (-5+(-9+x) \log (\log (x)))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 50, normalized size = 1.52 \begin {gather*} -\frac {50 \, x^{2} + {\left (x^{4} - 9 \, x^{3} + 89 \, x^{2} + e^{4}\right )} \log \left (\log \relax (x)\right )}{5 \, x^{2} - {\left (x^{3} - 9 \, x^{2}\right )} \log \left (\log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.65, size = 59, normalized size = 1.79 \begin {gather*} \frac {x^{4} \log \left (\log \relax (x)\right ) - 9 \, x^{3} \log \left (\log \relax (x)\right ) + 89 \, x^{2} \log \left (\log \relax (x)\right ) + 50 \, x^{2} + e^{4} \log \left (\log \relax (x)\right )}{x^{3} \log \left (\log \relax (x)\right ) - 9 \, x^{2} \log \left (\log \relax (x)\right ) - 5 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 65, normalized size = 1.97
method | result | size |
risch | \(\frac {x^{4}-9 x^{3}+89 x^{2}+{\mathrm e}^{4}}{x^{2} \left (x -9\right )}+\frac {5 x^{4}+5 x^{3}-5 x^{2}+5 \,{\mathrm e}^{4}}{x^{2} \left (x -9\right ) \left (x \ln \left (\ln \relax (x )\right )-9 \ln \left (\ln \relax (x )\right )-5\right )}\) | \(65\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.74, size = 50, normalized size = 1.52 \begin {gather*} -\frac {50 \, x^{2} + {\left (x^{4} - 9 \, x^{3} + 89 \, x^{2} + e^{4}\right )} \log \left (\log \relax (x)\right )}{5 \, x^{2} - {\left (x^{3} - 9 \, x^{2}\right )} \log \left (\log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {5\,{\mathrm {e}}^4-5\,x^2+5\,x^3+5\,x^4+\ln \left (\ln \relax (x)\right )\,\ln \relax (x)\,\left (10\,x^4+5\,x^3-10\,{\mathrm {e}}^4\right )+{\ln \left (\ln \relax (x)\right )}^2\,\ln \relax (x)\,\left (8\,x^3+18\,x^4-x^5+{\mathrm {e}}^4\,\left (3\,x-18\right )\right )}{25\,x^3\,\ln \relax (x)+\ln \left (\ln \relax (x)\right )\,\ln \relax (x)\,\left (90\,x^3-10\,x^4\right )+{\ln \left (\ln \relax (x)\right )}^2\,\ln \relax (x)\,\left (x^5-18\,x^4+81\,x^3\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.66, size = 66, normalized size = 2.00 \begin {gather*} x + \frac {89 x^{2} + e^{4}}{x^{3} - 9 x^{2}} + \frac {5 x^{4} + 5 x^{3} - 5 x^{2} + 5 e^{4}}{- 5 x^{3} + 45 x^{2} + \left (x^{4} - 18 x^{3} + 81 x^{2}\right ) \log {\left (\log {\relax (x )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________