Optimal. Leaf size=25 \[ \frac {4+\frac {25}{x}-x}{-6+\frac {5}{\log \left (e^6 x\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 0.44, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {125+20 x-5 x^2+\left (-125-5 x^2\right ) \log \left (e^6 x\right )+\left (150+6 x^2\right ) \log ^2\left (e^6 x\right )}{25 x^2-60 x^2 \log \left (e^6 x\right )+36 x^2 \log ^2\left (e^6 x\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4775+20 x+181 x^2+67 \left (25+x^2\right ) \log (x)+6 \left (25+x^2\right ) \log ^2(x)}{x^2 (31+6 \log (x))^2} \, dx\\ &=\int \left (\frac {25+x^2}{6 x^2}-\frac {5 \left (-25-4 x+x^2\right )}{x^2 (31+6 \log (x))^2}+\frac {5 \left (25+x^2\right )}{6 x^2 (31+6 \log (x))}\right ) \, dx\\ &=\frac {1}{6} \int \frac {25+x^2}{x^2} \, dx+\frac {5}{6} \int \frac {25+x^2}{x^2 (31+6 \log (x))} \, dx-5 \int \frac {-25-4 x+x^2}{x^2 (31+6 \log (x))^2} \, dx\\ &=\frac {1}{6} \int \left (1+\frac {25}{x^2}\right ) \, dx+\frac {5}{6} \int \left (\frac {1}{31+6 \log (x)}+\frac {25}{x^2 (31+6 \log (x))}\right ) \, dx-5 \int \frac {-25-4 x+x^2}{x^2 (31+6 \log (x))^2} \, dx\\ &=-\frac {25}{6 x}+\frac {x}{6}+\frac {5}{6} \int \frac {1}{31+6 \log (x)} \, dx-5 \int \frac {-25-4 x+x^2}{x^2 (31+6 \log (x))^2} \, dx+\frac {125}{6} \int \frac {1}{x^2 (31+6 \log (x))} \, dx\\ &=-\frac {25}{6 x}+\frac {x}{6}+\frac {5}{6} \operatorname {Subst}\left (\int \frac {e^x}{31+6 x} \, dx,x,\log (x)\right )-5 \int \frac {-25-4 x+x^2}{x^2 (31+6 \log (x))^2} \, dx+\frac {125}{6} \operatorname {Subst}\left (\int \frac {e^{-x}}{31+6 x} \, dx,x,\log (x)\right )\\ &=-\frac {25}{6 x}+\frac {x}{6}+\frac {125}{36} e^{31/6} \text {Ei}\left (\frac {1}{6} (-31-6 \log (x))\right )+\frac {5 \text {Ei}\left (\frac {1}{6} (31+6 \log (x))\right )}{36 e^{31/6}}-5 \int \frac {-25-4 x+x^2}{x^2 (31+6 \log (x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 30, normalized size = 1.20 \begin {gather*} \frac {-25+x^2+\frac {5 \left (-25-4 x+x^2\right )}{31+6 \log (x)}}{6 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 32, normalized size = 1.28 \begin {gather*} \frac {3 \, {\left (x^{2} - 25\right )} \log \left (x e^{6}\right ) - 10 \, x}{3 \, {\left (6 \, x \log \left (x e^{6}\right ) - 5 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.57, size = 30, normalized size = 1.20 \begin {gather*} \frac {1}{6} \, x + \frac {5 \, {\left (x^{2} - 4 \, x - 25\right )}}{6 \, {\left (6 \, x \log \relax (x) + 31 \, x\right )}} - \frac {25}{6 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 36, normalized size = 1.44
method | result | size |
risch | \(\frac {x^{2}-25}{6 x}+\frac {\frac {5}{6} x^{2}-\frac {10}{3} x -\frac {125}{6}}{x \left (-5+6 \ln \left (x \,{\mathrm e}^{6}\right )\right )}\) | \(36\) |
norman | \(\frac {x^{2} \ln \left (x \,{\mathrm e}^{6}\right )-4 x \ln \left (x \,{\mathrm e}^{6}\right )-25 \ln \left (x \,{\mathrm e}^{6}\right )}{x \left (-5+6 \ln \left (x \,{\mathrm e}^{6}\right )\right )}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.70, size = 32, normalized size = 1.28 \begin {gather*} \frac {18 \, x^{2} + 3 \, {\left (x^{2} - 25\right )} \log \relax (x) - 10 \, x - 450}{3 \, {\left (6 \, x \log \relax (x) + 31 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.80, size = 31, normalized size = 1.24 \begin {gather*} -\frac {\ln \left (x\,{\mathrm {e}}^6\right )\,\left (-x^2+4\,x+25\right )}{x\,\left (6\,\ln \left (x\,{\mathrm {e}}^6\right )-5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.15, size = 31, normalized size = 1.24 \begin {gather*} \frac {x}{6} + \frac {5 x^{2} - 20 x - 125}{36 x \log {\left (x e^{6} \right )} - 30 x} - \frac {25}{6 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________