Optimal. Leaf size=25 \[ e^{1+x \left (8+x+\log \left (2+\frac {\frac {7}{3}-e^4}{x}\right )\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.55, antiderivative size = 32, normalized size of antiderivative = 1.28, number of steps used = 1, number of rules used = 1, integrand size = 91, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.011, Rules used = {6706} \begin {gather*} 3^{-x} e^{x^2+8 x+1} \left (\frac {6 x-3 e^4+7}{x}\right )^x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=3^{-x} e^{1+8 x+x^2} \left (\frac {7-3 e^4+6 x}{x}\right )^x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 32, normalized size = 1.28 \begin {gather*} 3^{-x} e^{1+8 x+x^2} \left (\frac {7-3 e^4+6 x}{x}\right )^x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 26, normalized size = 1.04 \begin {gather*} e^{\left (x^{2} + x \log \left (\frac {6 \, x - 3 \, e^{4} + 7}{3 \, x}\right ) + 8 \, x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.92, size = 26, normalized size = 1.04 \begin {gather*} e^{\left (x^{2} + x \log \left (-\frac {e^{4}}{x} + \frac {7}{3 \, x} + 2\right ) + 8 \, x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 27, normalized size = 1.08
method | result | size |
norman | \({\mathrm e}^{x \ln \left (\frac {-3 \,{\mathrm e}^{4}+6 x +7}{3 x}\right )+x^{2}+8 x +1}\) | \(27\) |
risch | \(\left (\frac {-3 \,{\mathrm e}^{4}+6 x +7}{3 x}\right )^{x} {\mathrm e}^{x^{2}+8 x +1}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.00, size = 31, normalized size = 1.24 \begin {gather*} e^{\left (x^{2} - x \log \relax (3) + x \log \left (6 \, x - 3 \, e^{4} + 7\right ) - x \log \relax (x) + 8 \, x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.02, size = 26, normalized size = 1.04 \begin {gather*} {\mathrm {e}}^{8\,x}\,{\mathrm {e}}^{x^2}\,\mathrm {e}\,{\left (\frac {2\,x-{\mathrm {e}}^4+\frac {7}{3}}{x}\right )}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.58, size = 24, normalized size = 0.96 \begin {gather*} e^{x^{2} + x \log {\left (\frac {2 x - e^{4} + \frac {7}{3}}{x} \right )} + 8 x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________