Optimal. Leaf size=28 \[ e^{-x (2+(5-x) x (3+x))}-\frac {e^3}{2 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 30, normalized size of antiderivative = 1.07, number of steps used = 4, number of rules used = 3, integrand size = 52, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.058, Rules used = {12, 14, 6706} \begin {gather*} e^{x^4-2 x^3-15 x^2-2 x}-\frac {e^3}{2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {e^3+e^{-2 x-15 x^2-2 x^3+x^4} \left (-4 x^2-60 x^3-12 x^4+8 x^5\right )}{x^2} \, dx\\ &=\frac {1}{2} \int \left (\frac {e^3}{x^2}+4 e^{-2 x-15 x^2-2 x^3+x^4} \left (-1-15 x-3 x^2+2 x^3\right )\right ) \, dx\\ &=-\frac {e^3}{2 x}+2 \int e^{-2 x-15 x^2-2 x^3+x^4} \left (-1-15 x-3 x^2+2 x^3\right ) \, dx\\ &=e^{-2 x-15 x^2-2 x^3+x^4}-\frac {e^3}{2 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 30, normalized size = 1.07 \begin {gather*} e^{-2 x-15 x^2-2 x^3+x^4}-\frac {e^3}{2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 31, normalized size = 1.11 \begin {gather*} \frac {2 \, x e^{\left (x^{4} - 2 \, x^{3} - 15 \, x^{2} - 2 \, x\right )} - e^{3}}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 31, normalized size = 1.11 \begin {gather*} \frac {2 \, x e^{\left (x^{4} - 2 \, x^{3} - 15 \, x^{2} - 2 \, x\right )} - e^{3}}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 25, normalized size = 0.89
method | result | size |
risch | \(-\frac {{\mathrm e}^{3}}{2 x}+{\mathrm e}^{x \left (x^{3}-2 x^{2}-15 x -2\right )}\) | \(25\) |
norman | \(\frac {{\mathrm e}^{x^{4}-2 x^{3}-15 x^{2}-2 x} x -\frac {{\mathrm e}^{3}}{2}}{x}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 26, normalized size = 0.93 \begin {gather*} -\frac {e^{3}}{2 \, x} + e^{\left (x^{4} - 2 \, x^{3} - 15 \, x^{2} - 2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.35, size = 29, normalized size = 1.04 \begin {gather*} {\mathrm {e}}^{-2\,x}\,{\mathrm {e}}^{x^4}\,{\mathrm {e}}^{-2\,x^3}\,{\mathrm {e}}^{-15\,x^2}-\frac {{\mathrm {e}}^3}{2\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 24, normalized size = 0.86 \begin {gather*} e^{x^{4} - 2 x^{3} - 15 x^{2} - 2 x} - \frac {e^{3}}{2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________