Optimal. Leaf size=30 \[ \frac {x}{-5+e^{-x^2+\frac {\log (50 x)}{x}} x \log (1-x)} \]
________________________________________________________________________________________
Rubi [F] time = 174.95, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {5-5 x+e^{\frac {-x^3+\log (50 x)}{x}} \left (-x^2+\left (1-x-2 x^3+2 x^4\right ) \log (1-x)+(-1+x) \log (1-x) \log (50 x)\right )}{-25+25 x+e^{\frac {-x^3+\log (50 x)}{x}} \left (10 x-10 x^2\right ) \log (1-x)+e^{\frac {2 \left (-x^3+\log (50 x)\right )}{x}} \left (-x^2+x^3\right ) \log ^2(1-x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [A] time = 0.41, size = 38, normalized size = 1.27 \begin {gather*} -\frac {e^{x^2} x}{5 e^{x^2}-50^{\frac {1}{x}} x^{1+\frac {1}{x}} \log (1-x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 30, normalized size = 1.00 \begin {gather*} \frac {x}{x e^{\left (-\frac {x^{3} - \log \left (50 \, x\right )}{x}\right )} \log \left (-x + 1\right ) - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 2.19, size = 30, normalized size = 1.00 \begin {gather*} \frac {x}{x e^{\left (-\frac {x^{3} - \log \left (50 \, x\right )}{x}\right )} \log \left (-x + 1\right ) - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 28, normalized size = 0.93
method | result | size |
risch | \(\frac {x}{\left (50 x \right )^{\frac {1}{x}} \ln \left (1-x \right ) {\mathrm e}^{-x^{2}} x -5}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.89, size = 44, normalized size = 1.47 \begin {gather*} \frac {x e^{\left (x^{2}\right )}}{x e^{\left (\frac {2 \, \log \relax (5)}{x} + \frac {\log \relax (2)}{x} + \frac {\log \relax (x)}{x}\right )} \log \left (-x + 1\right ) - 5 \, e^{\left (x^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.06, size = 31, normalized size = 1.03 \begin {gather*} \frac {x}{{50}^{1/x}\,x^{\frac {1}{x}+1}\,{\mathrm {e}}^{-x^2}\,\ln \left (1-x\right )-5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.56, size = 20, normalized size = 0.67 \begin {gather*} \frac {x}{x e^{\frac {- x^{3} + \log {\left (50 x \right )}}{x}} \log {\left (1 - x \right )} - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________