Optimal. Leaf size=15 \[ \frac {\log ^{\frac {5}{x}}(5)}{30 x^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 15, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {12, 2288} \begin {gather*} \frac {\log ^{\frac {5}{x}}(5)}{30 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{30} \int \frac {\log ^{\frac {5}{x}}(5) (-2 x-5 \log (\log (5)))}{x^4} \, dx\\ &=\frac {\log ^{\frac {5}{x}}(5)}{30 x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 15, normalized size = 1.00 \begin {gather*} \frac {\log ^{\frac {5}{x}}(5)}{30 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.85, size = 13, normalized size = 0.87 \begin {gather*} \frac {\log \relax (5)^{\frac {5}{x}}}{30 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (2 \, x + 5 \, \log \left (\log \relax (5)\right )\right )} \log \relax (5)^{\frac {5}{x}}}{30 \, x^{4}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 14, normalized size = 0.93
method | result | size |
risch | \(\frac {\ln \relax (5)^{\frac {5}{x}}}{30 x^{2}}\) | \(14\) |
gosper | \(\frac {{\mathrm e}^{\frac {5 \ln \left (\ln \relax (5)\right )}{x}}}{30 x^{2}}\) | \(15\) |
derivativedivides | \(\frac {{\mathrm e}^{\frac {5 \ln \left (\ln \relax (5)\right )}{x}}}{30 x^{2}}\) | \(15\) |
default | \(\frac {{\mathrm e}^{\frac {5 \ln \left (\ln \relax (5)\right )}{x}}}{30 x^{2}}\) | \(15\) |
norman | \(\frac {{\mathrm e}^{\frac {5 \ln \left (\ln \relax (5)\right )}{x}}}{30 x^{2}}\) | \(15\) |
meijerg | \(-\frac {2-\frac {\left (\frac {75 \ln \left (\ln \relax (5)\right )^{2}}{x^{2}}-\frac {30 \ln \left (\ln \relax (5)\right )}{x}+6\right ) {\mathrm e}^{\frac {5 \ln \left (\ln \relax (5)\right )}{x}}}{3}}{750 \ln \left (\ln \relax (5)\right )^{2}}+\frac {1-\frac {\left (2-\frac {10 \ln \left (\ln \relax (5)\right )}{x}\right ) {\mathrm e}^{\frac {5 \ln \left (\ln \relax (5)\right )}{x}}}{2}}{375 \ln \left (\ln \relax (5)\right )^{2}}\) | \(72\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.67, size = 35, normalized size = 2.33 \begin {gather*} \frac {\Gamma \left (3, -\frac {5 \, \log \left (\log \relax (5)\right )}{x}\right )}{750 \, \log \left (\log \relax (5)\right )^{2}} - \frac {\Gamma \left (2, -\frac {5 \, \log \left (\log \relax (5)\right )}{x}\right )}{375 \, \log \left (\log \relax (5)\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.57, size = 13, normalized size = 0.87 \begin {gather*} \frac {{\ln \relax (5)}^{5/x}}{30\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 14, normalized size = 0.93 \begin {gather*} \frac {e^{\frac {5 \log {\left (\log {\relax (5 )} \right )}}{x}}}{30 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________