Optimal. Leaf size=35 \[ 4^{-\frac {10 x}{(i \pi +\log (\log (625)))^2}} \left (\frac {1}{x}\right )^{\frac {10 x}{(i \pi +\log (\log (625)))^2}} \]
________________________________________________________________________________________
Rubi [F] time = 0.69, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4^{-\frac {10 x}{(i \pi +\log (\log (625)))^2}} \left (\frac {1}{x}\right )^{\frac {10 x}{(i \pi +\log (\log (625)))^2}} \left (-10+10 \log \left (\frac {1}{4 x}\right )\right )}{(i \pi +\log (\log (625)))^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int 4^{-\frac {10 x}{(i \pi +\log (\log (625)))^2}} \left (\frac {1}{x}\right )^{\frac {10 x}{(i \pi +\log (\log (625)))^2}} \left (-10+10 \log \left (\frac {1}{4 x}\right )\right ) \, dx}{(i \pi +\log (\log (625)))^2}\\ &=\frac {\int 5\ 2^{1-\frac {20 x}{(i \pi +\log (\log (625)))^2}} \left (\frac {1}{x}\right )^{\frac {10 x}{(i \pi +\log (\log (625)))^2}} \left (-1+\log \left (\frac {1}{4 x}\right )\right ) \, dx}{(i \pi +\log (\log (625)))^2}\\ &=\frac {5 \int 2^{1-\frac {20 x}{(i \pi +\log (\log (625)))^2}} \left (\frac {1}{x}\right )^{\frac {10 x}{(i \pi +\log (\log (625)))^2}} \left (-1+\log \left (\frac {1}{4 x}\right )\right ) \, dx}{(i \pi +\log (\log (625)))^2}\\ &=\frac {5 \int \left (-2^{1-\frac {20 x}{(i \pi +\log (\log (625)))^2}} \left (\frac {1}{x}\right )^{\frac {10 x}{(i \pi +\log (\log (625)))^2}}+2^{1-\frac {20 x}{(i \pi +\log (\log (625)))^2}} \left (\frac {1}{x}\right )^{\frac {10 x}{(i \pi +\log (\log (625)))^2}} \log \left (\frac {1}{4 x}\right )\right ) \, dx}{(i \pi +\log (\log (625)))^2}\\ &=-\frac {5 \int 2^{1-\frac {20 x}{(i \pi +\log (\log (625)))^2}} \left (\frac {1}{x}\right )^{\frac {10 x}{(i \pi +\log (\log (625)))^2}} \, dx}{(i \pi +\log (\log (625)))^2}+\frac {5 \int 2^{1-\frac {20 x}{(i \pi +\log (\log (625)))^2}} \left (\frac {1}{x}\right )^{\frac {10 x}{(i \pi +\log (\log (625)))^2}} \log \left (\frac {1}{4 x}\right ) \, dx}{(i \pi +\log (\log (625)))^2}\\ &=-\frac {5 \int 2^{1-\frac {20 x}{(i \pi +\log (\log (625)))^2}} \left (\frac {1}{x}\right )^{\frac {10 x}{(i \pi +\log (\log (625)))^2}} \, dx}{(i \pi +\log (\log (625)))^2}+\frac {5 \int \frac {\int 2^{1+\frac {20 x}{(\pi -i \log (\log (625)))^2}} \left (\frac {1}{x}\right )^{\frac {10 x}{(i \pi +\log (\log (625)))^2}} \, dx}{x} \, dx}{(i \pi +\log (\log (625)))^2}+\frac {\left (5 \log \left (\frac {1}{4 x}\right )\right ) \int 2^{1-\frac {20 x}{(i \pi +\log (\log (625)))^2}} \left (\frac {1}{x}\right )^{\frac {10 x}{(i \pi +\log (\log (625)))^2}} \, dx}{(i \pi +\log (\log (625)))^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.43, size = 58, normalized size = 1.66 \begin {gather*} -\frac {2^{\frac {20 x}{(\pi -i \log (\log (625)))^2}} \left (\frac {1}{x}\right )^{-\frac {10 x}{(\pi -i \log (\log (625)))^2}} (\pi -i \log (\log (625)))^2}{(i \pi +\log (\log (625)))^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.58, size = 16, normalized size = 0.46 \begin {gather*} \left (\frac {1}{4 \, x}\right )^{\frac {10 \, x}{\log \left (-4 \, \log \relax (5)\right )^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {10 \, \left (\frac {1}{4 \, x}\right )^{\frac {10 \, x}{\log \left (-4 \, \log \relax (5)\right )^{2}}} {\left (\log \left (\frac {1}{4 \, x}\right ) - 1\right )}}{\log \left (-4 \, \log \relax (5)\right )^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.39, size = 20, normalized size = 0.57
method | result | size |
default | \({\mathrm e}^{\frac {10 x \ln \left (\frac {1}{4 x}\right )}{\ln \left (-4 \ln \relax (5)\right )^{2}}}\) | \(20\) |
norman | \(-\frac {\left (-4 i \ln \relax (2) \pi -2 i \ln \left (\ln \relax (5)\right ) \pi +\pi ^{2}-4 \ln \relax (2)^{2}-4 \ln \relax (2) \ln \left (\ln \relax (5)\right )-\ln \left (\ln \relax (5)\right )^{2}\right ) {\mathrm e}^{\frac {10 x \ln \left (\frac {1}{4 x}\right )}{\ln \left (-4 \ln \relax (5)\right )^{2}}}}{\left (2 \ln \relax (2)+\ln \left (\ln \relax (5)\right )+i \pi \right ) \ln \left (-4 \ln \relax (5)\right )}\) | \(80\) |
risch | \(\frac {4 \left (\frac {1}{4 x}\right )^{\frac {10 x}{\left (i \pi +2 \ln \left (2 \sqrt {\ln \relax (5)}\right )\right )^{2}}} \ln \relax (2)^{2}}{\left (2 \ln \relax (2)+\ln \left (\ln \relax (5)\right )+i \pi \right )^{2}}+\frac {4 \left (\frac {1}{4 x}\right )^{\frac {10 x}{\left (i \pi +2 \ln \left (2 \sqrt {\ln \relax (5)}\right )\right )^{2}}} \ln \relax (2) \ln \left (\ln \relax (5)\right )}{\left (2 \ln \relax (2)+\ln \left (\ln \relax (5)\right )+i \pi \right )^{2}}+\frac {\left (\frac {1}{4 x}\right )^{\frac {10 x}{\left (i \pi +2 \ln \left (2 \sqrt {\ln \relax (5)}\right )\right )^{2}}} \ln \left (\ln \relax (5)\right )^{2}}{\left (2 \ln \relax (2)+\ln \left (\ln \relax (5)\right )+i \pi \right )^{2}}+\frac {4 i \left (\frac {1}{4 x}\right )^{\frac {10 x}{\left (i \pi +2 \ln \left (2 \sqrt {\ln \relax (5)}\right )\right )^{2}}} \ln \relax (2) \pi }{\left (2 \ln \relax (2)+\ln \left (\ln \relax (5)\right )+i \pi \right )^{2}}+\frac {2 i \left (\frac {1}{4 x}\right )^{\frac {10 x}{\left (i \pi +2 \ln \left (2 \sqrt {\ln \relax (5)}\right )\right )^{2}}} \ln \left (\ln \relax (5)\right ) \pi }{\left (2 \ln \relax (2)+\ln \left (\ln \relax (5)\right )+i \pi \right )^{2}}-\frac {\left (\frac {1}{4 x}\right )^{\frac {10 x}{\left (i \pi +2 \ln \left (2 \sqrt {\ln \relax (5)}\right )\right )^{2}}} \pi ^{2}}{\left (2 \ln \relax (2)+\ln \left (\ln \relax (5)\right )+i \pi \right )^{2}}\) | \(273\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.50, size = 93, normalized size = 2.66 \begin {gather*} \frac {{\left (4 \, \log \relax (2)^{2} + 4 \, \log \relax (2) \log \left (-\log \relax (5)\right ) + \log \left (-\log \relax (5)\right )^{2}\right )} e^{\left (-\frac {20 \, x \log \relax (2)}{4 \, \log \relax (2)^{2} + 4 \, \log \relax (2) \log \left (-\log \relax (5)\right ) + \log \left (-\log \relax (5)\right )^{2}} - \frac {10 \, x \log \relax (x)}{4 \, \log \relax (2)^{2} + 4 \, \log \relax (2) \log \left (-\log \relax (5)\right ) + \log \left (-\log \relax (5)\right )^{2}}\right )}}{\log \left (-4 \, \log \relax (5)\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.56, size = 93, normalized size = 2.66 \begin {gather*} {\mathrm {e}}^{-\frac {20\,x\,\ln \relax (2)}{{\ln \left (\ln \relax (5)\right )}^2+4\,\ln \relax (2)\,\ln \left (\ln \relax (5)\right )-\pi ^2+4\,{\ln \relax (2)}^2+\pi \,\ln \relax (2)\,4{}\mathrm {i}+\pi \,\ln \left (\ln \relax (5)\right )\,2{}\mathrm {i}}}\,{\mathrm {e}}^{\frac {10\,x\,\ln \left (\frac {1}{x}\right )}{{\ln \left (\ln \relax (5)\right )}^2+4\,\ln \relax (2)\,\ln \left (\ln \relax (5)\right )-\pi ^2+4\,{\ln \relax (2)}^2+\pi \,\ln \relax (2)\,4{}\mathrm {i}+\pi \,\ln \left (\ln \relax (5)\right )\,2{}\mathrm {i}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 19.53, size = 109, normalized size = 3.11 \begin {gather*} e^{- \frac {20 x \log {\relax (2 )}}{- \pi ^{2} + \log {\left (\log {\relax (5 )} \right )}^{2} + 4 \log {\relax (2 )} \log {\left (\log {\relax (5 )} \right )} + 4 \log {\relax (2 )}^{2} + 2 i \pi \log {\left (\log {\relax (5 )} \right )} + 4 i \pi \log {\relax (2 )}}} e^{\frac {10 x \log {\left (\frac {1}{x} \right )}}{- \pi ^{2} + \log {\left (\log {\relax (5 )} \right )}^{2} + 4 \log {\relax (2 )} \log {\left (\log {\relax (5 )} \right )} + 4 \log {\relax (2 )}^{2} + 2 i \pi \log {\left (\log {\relax (5 )} \right )} + 4 i \pi \log {\relax (2 )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________