Optimal. Leaf size=15 \[ \frac {5 e^{-\frac {1}{x^2}} x}{(4+x)^2} \]
________________________________________________________________________________________
Rubi [B] time = 0.07, antiderivative size = 36, normalized size of antiderivative = 2.40, number of steps used = 1, number of rules used = 1, integrand size = 44, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.023, Rules used = {2288} \begin {gather*} \frac {5 e^{-\frac {1}{x^2}} x^3 (x+4)}{x^5+12 x^4+48 x^3+64 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {5 e^{-\frac {1}{x^2}} x^3 (4+x)}{64 x^2+48 x^3+12 x^4+x^5}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 15, normalized size = 1.00 \begin {gather*} \frac {5 e^{-\frac {1}{x^2}} x}{(4+x)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 19, normalized size = 1.27 \begin {gather*} \frac {5 \, x e^{\left (-\frac {1}{x^{2}}\right )}}{x^{2} + 8 \, x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 19, normalized size = 1.27 \begin {gather*} \frac {5 \, x e^{\left (-\frac {1}{x^{2}}\right )}}{x^{2} + 8 \, x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 15, normalized size = 1.00
method | result | size |
norman | \(\frac {5 x \,{\mathrm e}^{-\frac {1}{x^{2}}}}{\left (4+x \right )^{2}}\) | \(15\) |
risch | \(\frac {5 x \,{\mathrm e}^{-\frac {1}{x^{2}}}}{\left (4+x \right )^{2}}\) | \(15\) |
gosper | \(\frac {5 x \,{\mathrm e}^{-\frac {1}{x^{2}}}}{x^{2}+8 x +16}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 19, normalized size = 1.27 \begin {gather*} \frac {5 \, x e^{\left (-\frac {1}{x^{2}}\right )}}{x^{2} + 8 \, x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.13, size = 14, normalized size = 0.93 \begin {gather*} \frac {5\,x\,{\mathrm {e}}^{-\frac {1}{x^2}}}{{\left (x+4\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 17, normalized size = 1.13 \begin {gather*} \frac {5 x e^{- \frac {1}{x^{2}}}}{x^{2} + 8 x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________