3.78.37
Optimal. Leaf size=30
________________________________________________________________________________________
Rubi [A] time = 0.97, antiderivative size = 32, normalized size of antiderivative = 1.07,
number of steps used = 4, number of rules used = 4, integrand size = 151, = 0.026, Rules used
= {12, 2282, 2246, 31}
Antiderivative was successfully verified.
[In]
Int[(E^(4 + 2*E^(x + 2*x*(I*Pi + Log[-1 + E^2]) + x*(I*Pi + Log[-1 + E^2])^2) + x + 2*x*(I*Pi + Log[-1 + E^2])
+ x*(I*Pi + Log[-1 + E^2])^2)*(2 + 4*(I*Pi + Log[-1 + E^2]) + 2*(I*Pi + Log[-1 + E^2])^2))/(-1 + E^(4 + 2*E^(
x + 2*x*(I*Pi + Log[-1 + E^2]) + x*(I*Pi + Log[-1 + E^2])^2))),x]
[Out]
Log[1 - E^(4 + 2/E^(x*(Pi - I*(1 + Log[-1 + E^2]))^2))]
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 31
Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]
Rule 2246
Int[((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)*((a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.))^(p_.),
x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int[(a + b*x)^p, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b,
c, d, e, n, p}, x]
Rule 2282
Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] && !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] && !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 32, normalized size = 1.07
Antiderivative was successfully verified.
[In]
Integrate[(E^(4 + 2*E^(x + 2*x*(I*Pi + Log[-1 + E^2]) + x*(I*Pi + Log[-1 + E^2])^2) + x + 2*x*(I*Pi + Log[-1 +
E^2]) + x*(I*Pi + Log[-1 + E^2])^2)*(2 + 4*(I*Pi + Log[-1 + E^2]) + 2*(I*Pi + Log[-1 + E^2])^2))/(-1 + E^(4 +
2*E^(x + 2*x*(I*Pi + Log[-1 + E^2]) + x*(I*Pi + Log[-1 + E^2])^2))),x]
[Out]
Log[1 - E^(4 + 2/E^(x*(Pi - I*(1 + Log[-1 + E^2]))^2))]
________________________________________________________________________________________
fricas [B] time = 0.72, size = 105, normalized size = 3.50
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((2*log(1-exp(2))^2+4*log(1-exp(2))+2)*exp(x*log(1-exp(2))^2+2*x*log(1-exp(2))+x)*exp(exp(x*log(1-exp
(2))^2+2*x*log(1-exp(2))+x)+2)^2/(exp(exp(x*log(1-exp(2))^2+2*x*log(1-exp(2))+x)+2)^2-1),x, algorithm="fricas"
)
[Out]
-x*log(-e^2 + 1)^2 - 2*x*log(-e^2 + 1) - x + log(e^(x*log(-e^2 + 1)^2 + 2*x*log(-e^2 + 1) + x + 2*e^(x*log(-e^
2 + 1)^2 + 2*x*log(-e^2 + 1) + x) + 4) - e^(x*log(-e^2 + 1)^2 + 2*x*log(-e^2 + 1) + x))
________________________________________________________________________________________
giac [A] time = 0.95, size = 32, normalized size = 1.07
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((2*log(1-exp(2))^2+4*log(1-exp(2))+2)*exp(x*log(1-exp(2))^2+2*x*log(1-exp(2))+x)*exp(exp(x*log(1-exp
(2))^2+2*x*log(1-exp(2))+x)+2)^2/(exp(exp(x*log(1-exp(2))^2+2*x*log(1-exp(2))+x)+2)^2-1),x, algorithm="giac")
[Out]
log(e^(2*e^(x*log(-e^2 + 1)^2 + 2*x*log(-e^2 + 1) + x) + 4) - 1)
________________________________________________________________________________________
maple [B] time = 0.28, size = 62, normalized size = 2.07
|
|
|
method |
result |
size |
|
|
|
derivativedivides |
|
|
norman |
|
|
default |
|
|
risch |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((2*ln(1-exp(2))^2+4*ln(1-exp(2))+2)*exp(x*ln(1-exp(2))^2+2*x*ln(1-exp(2))+x)*exp(exp(x*ln(1-exp(2))^2+2*x*
ln(1-exp(2))+x)+2)^2/(exp(exp(x*ln(1-exp(2))^2+2*x*ln(1-exp(2))+x)+2)^2-1),x,method=_RETURNVERBOSE)
[Out]
ln(exp(exp(x*ln(1-exp(2))^2+2*x*ln(1-exp(2))+x)+2)-1)+ln(exp(exp(x*ln(1-exp(2))^2+2*x*ln(1-exp(2))+x)+2)+1)
________________________________________________________________________________________
maxima [A] time = 0.39, size = 32, normalized size = 1.07
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((2*log(1-exp(2))^2+4*log(1-exp(2))+2)*exp(x*log(1-exp(2))^2+2*x*log(1-exp(2))+x)*exp(exp(x*log(1-exp
(2))^2+2*x*log(1-exp(2))+x)+2)^2/(exp(exp(x*log(1-exp(2))^2+2*x*log(1-exp(2))+x)+2)^2-1),x, algorithm="maxima"
)
[Out]
log(e^(2*e^(x*log(-e^2 + 1)^2 + 2*x*log(-e^2 + 1) + x) + 4) - 1)
________________________________________________________________________________________
mupad [B] time = 6.64, size = 32, normalized size = 1.07
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((exp(x + 2*x*log(1 - exp(2)) + x*log(1 - exp(2))^2)*exp(2*exp(x + 2*x*log(1 - exp(2)) + x*log(1 - exp(2))^
2) + 4)*(4*log(1 - exp(2)) + 2*log(1 - exp(2))^2 + 2))/(exp(2*exp(x + 2*x*log(1 - exp(2)) + x*log(1 - exp(2))^
2) + 4) - 1),x)
[Out]
log(exp(2*exp(x*log(1 - exp(2))^2)*exp(x)*(1 - exp(2))^(2*x) + 4) - 1)
________________________________________________________________________________________
sympy [B] time = 123.74, size = 82, normalized size = 2.73
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((2*ln(1-exp(2))**2+4*ln(1-exp(2))+2)*exp(x*ln(1-exp(2))**2+2*x*ln(1-exp(2))+x)*exp(exp(x*ln(1-exp(2)
)**2+2*x*ln(1-exp(2))+x)+2)**2/(exp(exp(x*ln(1-exp(2))**2+2*x*ln(1-exp(2))+x)+2)**2-1),x)
[Out]
(2 + 4*log(-1 + exp(2)) + 4*I*pi + 2*(log(-1 + exp(2)) + I*pi)**2)*log(exp(2*exp(x + 2*x*(log(-1 + exp(2)) + I
*pi) + x*(log(-1 + exp(2)) + I*pi)**2) + 4) - 1)/(2*(1 + log(-1 + exp(2)) + I*pi)**2)
________________________________________________________________________________________