3.78.37 e4+2ex+2x(iπ+log(1+e2))+x(iπ+log(1+e2))2+x+2x(iπ+log(1+e2))+x(iπ+log(1+e2))2(2+4(iπ+log(1+e2))+2(iπ+log(1+e2))2)1+e4+2ex+2x(iπ+log(1+e2))+x(iπ+log(1+e2))2dx

Optimal. Leaf size=30 log(1e4+2ex(1+iπ+log(1+e2))2)

________________________________________________________________________________________

Rubi [A]  time = 0.97, antiderivative size = 32, normalized size of antiderivative = 1.07, number of steps used = 4, number of rules used = 4, integrand size = 151, number of rulesintegrand size = 0.026, Rules used = {12, 2282, 2246, 31} log(1exp(4+2ex(πi(1+log(e21)))2))

Antiderivative was successfully verified.

[In]

Int[(E^(4 + 2*E^(x + 2*x*(I*Pi + Log[-1 + E^2]) + x*(I*Pi + Log[-1 + E^2])^2) + x + 2*x*(I*Pi + Log[-1 + E^2])
 + x*(I*Pi + Log[-1 + E^2])^2)*(2 + 4*(I*Pi + Log[-1 + E^2]) + 2*(I*Pi + Log[-1 + E^2])^2))/(-1 + E^(4 + 2*E^(
x + 2*x*(I*Pi + Log[-1 + E^2]) + x*(I*Pi + Log[-1 + E^2])^2))),x]

[Out]

Log[1 - E^(4 + 2/E^(x*(Pi - I*(1 + Log[-1 + E^2]))^2))]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 2246

Int[((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)*((a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.))^(p_.),
x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int[(a + b*x)^p, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b,
c, d, e, n, p}, x]

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rubi steps

integral=((2(πi(1+log(1+e2)))2)exp(4+2exp(x+2x(iπ+log(1+e2))+x(iπ+log(1+e2))2)+x+2x(iπ+log(1+e2))+x(iπ+log(1+e2))2)1+exp(4+2exp(x+2x(iπ+log(1+e2))+x(iπ+log(1+e2))2))dx)=2Subst(e4+2x1+e4+2xdx,x,exp(x(1+2(iπ+log(1+e2))+(iπ+log(1+e2))2)))=Subst(11+xdx,x,exp(4+2exp(x(1+2(iπ+log(1+e2))+(iπ+log(1+e2))2))))=log(1exp(4+2exp(x(1+2(iπ+log(1+e2))+(iπ+log(1+e2))2))))

________________________________________________________________________________________

Mathematica [A]  time = 0.22, size = 32, normalized size = 1.07 log(1e4+2ex(πi(1+log(1+e2)))2)

Antiderivative was successfully verified.

[In]

Integrate[(E^(4 + 2*E^(x + 2*x*(I*Pi + Log[-1 + E^2]) + x*(I*Pi + Log[-1 + E^2])^2) + x + 2*x*(I*Pi + Log[-1 +
 E^2]) + x*(I*Pi + Log[-1 + E^2])^2)*(2 + 4*(I*Pi + Log[-1 + E^2]) + 2*(I*Pi + Log[-1 + E^2])^2))/(-1 + E^(4 +
 2*E^(x + 2*x*(I*Pi + Log[-1 + E^2]) + x*(I*Pi + Log[-1 + E^2])^2))),x]

[Out]

Log[1 - E^(4 + 2/E^(x*(Pi - I*(1 + Log[-1 + E^2]))^2))]

________________________________________________________________________________________

fricas [B]  time = 0.72, size = 105, normalized size = 3.50 xlog(e2+1)22xlog(e2+1)x+log(e(xlog(e2+1)2+2xlog(e2+1)+x+2e(xlog(e2+1)2+2xlog(e2+1)+x)+4)e(xlog(e2+1)2+2xlog(e2+1)+x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*log(1-exp(2))^2+4*log(1-exp(2))+2)*exp(x*log(1-exp(2))^2+2*x*log(1-exp(2))+x)*exp(exp(x*log(1-exp
(2))^2+2*x*log(1-exp(2))+x)+2)^2/(exp(exp(x*log(1-exp(2))^2+2*x*log(1-exp(2))+x)+2)^2-1),x, algorithm="fricas"
)

[Out]

-x*log(-e^2 + 1)^2 - 2*x*log(-e^2 + 1) - x + log(e^(x*log(-e^2 + 1)^2 + 2*x*log(-e^2 + 1) + x + 2*e^(x*log(-e^
2 + 1)^2 + 2*x*log(-e^2 + 1) + x) + 4) - e^(x*log(-e^2 + 1)^2 + 2*x*log(-e^2 + 1) + x))

________________________________________________________________________________________

giac [A]  time = 0.95, size = 32, normalized size = 1.07 log(e(2e(xlog(e2+1)2+2xlog(e2+1)+x)+4)1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*log(1-exp(2))^2+4*log(1-exp(2))+2)*exp(x*log(1-exp(2))^2+2*x*log(1-exp(2))+x)*exp(exp(x*log(1-exp
(2))^2+2*x*log(1-exp(2))+x)+2)^2/(exp(exp(x*log(1-exp(2))^2+2*x*log(1-exp(2))+x)+2)^2-1),x, algorithm="giac")

[Out]

log(e^(2*e^(x*log(-e^2 + 1)^2 + 2*x*log(-e^2 + 1) + x) + 4) - 1)

________________________________________________________________________________________

maple [B]  time = 0.28, size = 62, normalized size = 2.07




method result size



derivativedivides ln(eexln(1e2)2+2xln(1e2)+x+21)+ln(eexln(1e2)2+2xln(1e2)+x+2+1) 62
norman ln(eexln(1e2)2+2xln(1e2)+x+21)+ln(eexln(1e2)2+2xln(1e2)+x+2+1) 62
default (2ln(1e2)2+4ln(1e2)+2)(ln(eexln(1e2)2+2xln(1e2)+x+21)2+ln(eexln(1e2)2+2xln(1e2)+x+2+1)2)ln(1e2)2+2ln(1e2)+1 111
risch (2ln(1e2)2+4ln(1e2)+2)(1e2)2xex(ln(1e2)2+1)ln(1e2)2+2ln(1e2)+12ln(1e2)2(1e2)2xex(ln(1e2)2+1)ln(1e2)2+2ln(1e2)+14ln(1e2)(1e2)2xex(ln(1e2)2+1)ln(1e2)2+2ln(1e2)+14ln(1e2)2ln(1e2)2+2ln(1e2)+12(1e2)2xex(ln(1e2)2+1)ln(1e2)2+2ln(1e2)+18ln(1e2)ln(1e2)2+2ln(1e2)+14ln(1e2)2+2ln(1e2)+1+ln(e2(1e2)2xex(ln(1e2)2+1)+41)ln(1e2)2ln(1e2)2+2ln(1e2)+1+2ln(e2(1e2)2xex(ln(1e2)2+1)+41)ln(1e2)ln(1e2)2+2ln(1e2)+1+ln(e2(1e2)2xex(ln(1e2)2+1)+41)ln(1e2)2+2ln(1e2)+1 501



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*ln(1-exp(2))^2+4*ln(1-exp(2))+2)*exp(x*ln(1-exp(2))^2+2*x*ln(1-exp(2))+x)*exp(exp(x*ln(1-exp(2))^2+2*x*
ln(1-exp(2))+x)+2)^2/(exp(exp(x*ln(1-exp(2))^2+2*x*ln(1-exp(2))+x)+2)^2-1),x,method=_RETURNVERBOSE)

[Out]

ln(exp(exp(x*ln(1-exp(2))^2+2*x*ln(1-exp(2))+x)+2)-1)+ln(exp(exp(x*ln(1-exp(2))^2+2*x*ln(1-exp(2))+x)+2)+1)

________________________________________________________________________________________

maxima [A]  time = 0.39, size = 32, normalized size = 1.07 log(e(2e(xlog(e2+1)2+2xlog(e2+1)+x)+4)1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*log(1-exp(2))^2+4*log(1-exp(2))+2)*exp(x*log(1-exp(2))^2+2*x*log(1-exp(2))+x)*exp(exp(x*log(1-exp
(2))^2+2*x*log(1-exp(2))+x)+2)^2/(exp(exp(x*log(1-exp(2))^2+2*x*log(1-exp(2))+x)+2)^2-1),x, algorithm="maxima"
)

[Out]

log(e^(2*e^(x*log(-e^2 + 1)^2 + 2*x*log(-e^2 + 1) + x) + 4) - 1)

________________________________________________________________________________________

mupad [B]  time = 6.64, size = 32, normalized size = 1.07 ln(e2exln(1e2)2ex(1e2)2x+41)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(x + 2*x*log(1 - exp(2)) + x*log(1 - exp(2))^2)*exp(2*exp(x + 2*x*log(1 - exp(2)) + x*log(1 - exp(2))^
2) + 4)*(4*log(1 - exp(2)) + 2*log(1 - exp(2))^2 + 2))/(exp(2*exp(x + 2*x*log(1 - exp(2)) + x*log(1 - exp(2))^
2) + 4) - 1),x)

[Out]

log(exp(2*exp(x*log(1 - exp(2))^2)*exp(x)*(1 - exp(2))^(2*x) + 4) - 1)

________________________________________________________________________________________

sympy [B]  time = 123.74, size = 82, normalized size = 2.73 (2+4log(1+e2)+4iπ+2(log(1+e2)+iπ)2)log(e2ex+2x(log(1+e2)+iπ)+x(log(1+e2)+iπ)2+41)2(1+log(1+e2)+iπ)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*ln(1-exp(2))**2+4*ln(1-exp(2))+2)*exp(x*ln(1-exp(2))**2+2*x*ln(1-exp(2))+x)*exp(exp(x*ln(1-exp(2)
)**2+2*x*ln(1-exp(2))+x)+2)**2/(exp(exp(x*ln(1-exp(2))**2+2*x*ln(1-exp(2))+x)+2)**2-1),x)

[Out]

(2 + 4*log(-1 + exp(2)) + 4*I*pi + 2*(log(-1 + exp(2)) + I*pi)**2)*log(exp(2*exp(x + 2*x*(log(-1 + exp(2)) + I
*pi) + x*(log(-1 + exp(2)) + I*pi)**2) + 4) - 1)/(2*(1 + log(-1 + exp(2)) + I*pi)**2)

________________________________________________________________________________________