Optimal. Leaf size=16 \[ \frac {100 (6-x+\log (x))^2}{3 x^2} \]
________________________________________________________________________________________
Rubi [B] time = 0.07, antiderivative size = 69, normalized size of antiderivative = 4.31, number of steps used = 10, number of rules used = 7, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.269, Rules used = {12, 14, 37, 2334, 43, 2305, 2304} \begin {gather*} \frac {250 (6-x)^2}{9 x^2}+\frac {200}{x^2}+\frac {100 \log ^2(x)}{3 x^2}+\frac {100 (11-x)^2 \log (x)}{33 x^2}+\frac {100 \log (x)}{3 x^2}-\frac {200}{3 x}-\frac {100 \log (x)}{33} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 37
Rule 43
Rule 2304
Rule 2305
Rule 2334
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {-6000+1000 x+(-2200+200 x) \log (x)-200 \log ^2(x)}{x^3} \, dx\\ &=\frac {1}{3} \int \left (\frac {1000 (-6+x)}{x^3}+\frac {200 (-11+x) \log (x)}{x^3}-\frac {200 \log ^2(x)}{x^3}\right ) \, dx\\ &=\frac {200}{3} \int \frac {(-11+x) \log (x)}{x^3} \, dx-\frac {200}{3} \int \frac {\log ^2(x)}{x^3} \, dx+\frac {1000}{3} \int \frac {-6+x}{x^3} \, dx\\ &=\frac {250 (6-x)^2}{9 x^2}+\frac {100 (11-x)^2 \log (x)}{33 x^2}+\frac {100 \log ^2(x)}{3 x^2}-\frac {200}{3} \int \frac {(11-x)^2}{22 x^3} \, dx-\frac {200}{3} \int \frac {\log (x)}{x^3} \, dx\\ &=\frac {50}{3 x^2}+\frac {250 (6-x)^2}{9 x^2}+\frac {100 \log (x)}{3 x^2}+\frac {100 (11-x)^2 \log (x)}{33 x^2}+\frac {100 \log ^2(x)}{3 x^2}-\frac {100}{33} \int \frac {(11-x)^2}{x^3} \, dx\\ &=\frac {50}{3 x^2}+\frac {250 (6-x)^2}{9 x^2}+\frac {100 \log (x)}{3 x^2}+\frac {100 (11-x)^2 \log (x)}{33 x^2}+\frac {100 \log ^2(x)}{3 x^2}-\frac {100}{33} \int \left (\frac {121}{x^3}-\frac {22}{x^2}+\frac {1}{x}\right ) \, dx\\ &=\frac {200}{x^2}+\frac {250 (6-x)^2}{9 x^2}-\frac {200}{3 x}-\frac {100 \log (x)}{33}+\frac {100 \log (x)}{3 x^2}+\frac {100 (11-x)^2 \log (x)}{33 x^2}+\frac {100 \log ^2(x)}{3 x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.02, size = 40, normalized size = 2.50 \begin {gather*} \frac {200}{3} \left (\frac {18}{x^2}-\frac {6}{x}+\frac {6 \log (x)}{x^2}-\frac {\log (x)}{x}+\frac {\log ^2(x)}{2 x^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 23, normalized size = 1.44 \begin {gather*} -\frac {100 \, {\left (2 \, {\left (x - 6\right )} \log \relax (x) - \log \relax (x)^{2} + 12 \, x - 36\right )}}{3 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 28, normalized size = 1.75 \begin {gather*} -\frac {200 \, {\left (x - 6\right )} \log \relax (x)}{3 \, x^{2}} + \frac {100 \, \log \relax (x)^{2}}{3 \, x^{2}} - \frac {400 \, {\left (x - 3\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 25, normalized size = 1.56
method | result | size |
norman | \(\frac {1200-400 x +\frac {100 \ln \relax (x )^{2}}{3}-\frac {200 x \ln \relax (x )}{3}+400 \ln \relax (x )}{x^{2}}\) | \(25\) |
risch | \(\frac {100 \ln \relax (x )^{2}}{3 x^{2}}-\frac {200 \left (x -6\right ) \ln \relax (x )}{3 x^{2}}-\frac {400 \left (x -3\right )}{x^{2}}\) | \(29\) |
default | \(\frac {100 \ln \relax (x )^{2}}{3 x^{2}}+\frac {400 \ln \relax (x )}{x^{2}}+\frac {1200}{x^{2}}-\frac {200 \ln \relax (x )}{3 x}-\frac {400}{x}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.35, size = 42, normalized size = 2.62 \begin {gather*} -\frac {200 \, \log \relax (x)}{3 \, x} + \frac {50 \, {\left (2 \, \log \relax (x)^{2} + 2 \, \log \relax (x) + 1\right )}}{3 \, x^{2}} - \frac {400}{x} + \frac {1100 \, \log \relax (x)}{3 \, x^{2}} + \frac {3550}{3 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.29, size = 16, normalized size = 1.00 \begin {gather*} \frac {100\,\left (\ln \relax (x)+6\right )\,\left (\ln \relax (x)-2\,x+6\right )}{3\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.17, size = 32, normalized size = 2.00 \begin {gather*} \frac {1200 - 400 x}{x^{2}} + \frac {\left (1200 - 200 x\right ) \log {\relax (x )}}{3 x^{2}} + \frac {100 \log {\relax (x )}^{2}}{3 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________