Optimal. Leaf size=26 \[ \frac {13}{6 \left (-x+\log \left (\log \left (-3+e^{x/2}+e^{x^2}\right )\right )\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.63, antiderivative size = 26, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 206, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.015, Rules used = {6688, 12, 6686} \begin {gather*} -\frac {13}{6 \left (x-\log \left (\log \left (e^{x^2}+e^{x/2}-3\right )\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {13 \left (e^{x/2}+4 e^{x^2} x-2 \left (-3+e^{x/2}+e^{x^2}\right ) \log \left (-3+e^{x/2}+e^{x^2}\right )\right )}{12 \left (3-e^{x/2}-e^{x^2}\right ) \log \left (-3+e^{x/2}+e^{x^2}\right ) \left (x-\log \left (\log \left (-3+e^{x/2}+e^{x^2}\right )\right )\right )^2} \, dx\\ &=\frac {13}{12} \int \frac {e^{x/2}+4 e^{x^2} x-2 \left (-3+e^{x/2}+e^{x^2}\right ) \log \left (-3+e^{x/2}+e^{x^2}\right )}{\left (3-e^{x/2}-e^{x^2}\right ) \log \left (-3+e^{x/2}+e^{x^2}\right ) \left (x-\log \left (\log \left (-3+e^{x/2}+e^{x^2}\right )\right )\right )^2} \, dx\\ &=-\frac {13}{6 \left (x-\log \left (\log \left (-3+e^{x/2}+e^{x^2}\right )\right )\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 26, normalized size = 1.00 \begin {gather*} \frac {13}{6 \left (-x+\log \left (\log \left (-3+e^{x/2}+e^{x^2}\right )\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.01, size = 20, normalized size = 0.77 \begin {gather*} -\frac {13}{6 \, {\left (x - \log \left (\log \left (e^{\left (x^{2}\right )} + e^{\left (\frac {1}{2} \, x\right )} - 3\right )\right )\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.97, size = 20, normalized size = 0.77 \begin {gather*} -\frac {13}{6 \, {\left (x - \log \left (\log \left (e^{\left (x^{2}\right )} + e^{\left (\frac {1}{2} \, x\right )} - 3\right )\right )\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 21, normalized size = 0.81
method | result | size |
risch | \(-\frac {13}{6 \left (x -\ln \left (\ln \left ({\mathrm e}^{x^{2}}+{\mathrm e}^{\frac {x}{2}}-3\right )\right )\right )}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 20, normalized size = 0.77 \begin {gather*} -\frac {13}{6 \, {\left (x - \log \left (\log \left (e^{\left (x^{2}\right )} + e^{\left (\frac {1}{2} \, x\right )} - 3\right )\right )\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.76, size = 22, normalized size = 0.85 \begin {gather*} -\frac {13}{6\,\left (x-\ln \left (\ln \left ({\mathrm {e}}^{x/2}+{\mathrm {e}}^{x^2}-3\right )\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 40.27, size = 20, normalized size = 0.77 \begin {gather*} \frac {13}{- 6 x + 6 \log {\left (\log {\left (e^{\frac {x}{2}} + e^{x^{2}} - 3 \right )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________