Optimal. Leaf size=23 \[ -3+e^{e^{5 \left (24+x+\frac {(2+x)^2}{x^2}\right )}}-x \]
________________________________________________________________________________________
Rubi [F] time = 0.94, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-x^3+\exp \left (e^{\frac {20+20 x+125 x^2+5 x^3}{x^2}}+\frac {20+20 x+125 x^2+5 x^3}{x^2}\right ) \left (-40-20 x+5 x^3\right )}{x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-1+\frac {5 e^{125+e^{125+\frac {20}{x^2}+\frac {20}{x}+5 x}+\frac {20}{x^2}+\frac {20}{x}+5 x} \left (-8-4 x+x^3\right )}{x^3}\right ) \, dx\\ &=-x+5 \int \frac {e^{125+e^{125+\frac {20}{x^2}+\frac {20}{x}+5 x}+\frac {20}{x^2}+\frac {20}{x}+5 x} \left (-8-4 x+x^3\right )}{x^3} \, dx\\ &=-x+5 \int \left (e^{125+e^{125+\frac {20}{x^2}+\frac {20}{x}+5 x}+\frac {20}{x^2}+\frac {20}{x}+5 x}-\frac {8 e^{125+e^{125+\frac {20}{x^2}+\frac {20}{x}+5 x}+\frac {20}{x^2}+\frac {20}{x}+5 x}}{x^3}-\frac {4 e^{125+e^{125+\frac {20}{x^2}+\frac {20}{x}+5 x}+\frac {20}{x^2}+\frac {20}{x}+5 x}}{x^2}\right ) \, dx\\ &=-x+5 \int e^{125+e^{125+\frac {20}{x^2}+\frac {20}{x}+5 x}+\frac {20}{x^2}+\frac {20}{x}+5 x} \, dx-20 \int \frac {e^{125+e^{125+\frac {20}{x^2}+\frac {20}{x}+5 x}+\frac {20}{x^2}+\frac {20}{x}+5 x}}{x^2} \, dx-40 \int \frac {e^{125+e^{125+\frac {20}{x^2}+\frac {20}{x}+5 x}+\frac {20}{x^2}+\frac {20}{x}+5 x}}{x^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.40, size = 23, normalized size = 1.00 \begin {gather*} e^{e^{125+\frac {20}{x^2}+\frac {20}{x}+5 x}}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.57, size = 88, normalized size = 3.83 \begin {gather*} -{\left (x e^{\left (\frac {5 \, {\left (x^{3} + 25 \, x^{2} + 4 \, x + 4\right )}}{x^{2}}\right )} - e^{\left (\frac {5 \, x^{3} + x^{2} e^{\left (\frac {5 \, {\left (x^{3} + 25 \, x^{2} + 4 \, x + 4\right )}}{x^{2}}\right )} + 125 \, x^{2} + 20 \, x + 20}{x^{2}}\right )}\right )} e^{\left (-\frac {5 \, {\left (x^{3} + 25 \, x^{2} + 4 \, x + 4\right )}}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {x^{3} - 5 \, {\left (x^{3} - 4 \, x - 8\right )} e^{\left (\frac {5 \, {\left (x^{3} + 25 \, x^{2} + 4 \, x + 4\right )}}{x^{2}} + e^{\left (\frac {5 \, {\left (x^{3} + 25 \, x^{2} + 4 \, x + 4\right )}}{x^{2}}\right )}\right )}}{x^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 25, normalized size = 1.09
method | result | size |
risch | \(-x +{\mathrm e}^{{\mathrm e}^{\frac {5 x^{3}+125 x^{2}+20 x +20}{x^{2}}}}\) | \(25\) |
norman | \(\frac {x^{2} {\mathrm e}^{{\mathrm e}^{\frac {5 x^{3}+125 x^{2}+20 x +20}{x^{2}}}}-x^{3}}{x^{2}}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 21, normalized size = 0.91 \begin {gather*} -x + e^{\left (e^{\left (5 \, x + \frac {20}{x} + \frac {20}{x^{2}} + 125\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.82, size = 24, normalized size = 1.04 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^{5\,x}\,{\mathrm {e}}^{125}\,{\mathrm {e}}^{20/x}\,{\mathrm {e}}^{\frac {20}{x^2}}}-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 22, normalized size = 0.96 \begin {gather*} - x + e^{e^{\frac {5 x^{3} + 125 x^{2} + 20 x + 20}{x^{2}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________