Optimal. Leaf size=18 \[ \frac {1}{x}+16 \log ^4\left (-2+e^x+x+x^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.87, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2-e^x-x-x^2+\left (64 x^2+64 e^x x^2+128 x^3\right ) \log ^3\left (-2+e^x+x+x^2\right )}{-2 x^2+e^x x^2+x^3+x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {64 \left (-3-x+x^2\right ) \log ^3\left (-2+e^x+x+x^2\right )}{-2+e^x+x+x^2}+\frac {-1+64 x^2 \log ^3\left (-2+e^x+x+x^2\right )}{x^2}\right ) \, dx\\ &=-\left (64 \int \frac {\left (-3-x+x^2\right ) \log ^3\left (-2+e^x+x+x^2\right )}{-2+e^x+x+x^2} \, dx\right )+\int \frac {-1+64 x^2 \log ^3\left (-2+e^x+x+x^2\right )}{x^2} \, dx\\ &=-\left (64 \int \left (-\frac {3 \log ^3\left (-2+e^x+x+x^2\right )}{-2+e^x+x+x^2}-\frac {x \log ^3\left (-2+e^x+x+x^2\right )}{-2+e^x+x+x^2}+\frac {x^2 \log ^3\left (-2+e^x+x+x^2\right )}{-2+e^x+x+x^2}\right ) \, dx\right )+\int \left (-\frac {1}{x^2}+64 \log ^3\left (-2+e^x+x+x^2\right )\right ) \, dx\\ &=\frac {1}{x}+64 \int \log ^3\left (-2+e^x+x+x^2\right ) \, dx+64 \int \frac {x \log ^3\left (-2+e^x+x+x^2\right )}{-2+e^x+x+x^2} \, dx-64 \int \frac {x^2 \log ^3\left (-2+e^x+x+x^2\right )}{-2+e^x+x+x^2} \, dx+192 \int \frac {\log ^3\left (-2+e^x+x+x^2\right )}{-2+e^x+x+x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 18, normalized size = 1.00 \begin {gather*} \frac {1}{x}+16 \log ^4\left (-2+e^x+x+x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.15, size = 20, normalized size = 1.11 \begin {gather*} \frac {16 \, x \log \left (x^{2} + x + e^{x} - 2\right )^{4} + 1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {64 \, {\left (2 \, x^{3} + x^{2} e^{x} + x^{2}\right )} \log \left (x^{2} + x + e^{x} - 2\right )^{3} - x^{2} - x - e^{x} + 2}{x^{4} + x^{3} + x^{2} e^{x} - 2 \, x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 18, normalized size = 1.00
method | result | size |
risch | \(16 \ln \left ({\mathrm e}^{x}+x^{2}+x -2\right )^{4}+\frac {1}{x}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 20, normalized size = 1.11 \begin {gather*} \frac {16 \, x \log \left (x^{2} + x + e^{x} - 2\right )^{4} + 1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.24, size = 17, normalized size = 0.94 \begin {gather*} 16\,{\ln \left (x+{\mathrm {e}}^x+x^2-2\right )}^4+\frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.43, size = 17, normalized size = 0.94 \begin {gather*} 16 \log {\left (x^{2} + x + e^{x} - 2 \right )}^{4} + \frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________