Optimal. Leaf size=32 \[ \frac {1}{5} \left (e^{\frac {1}{5} \left (\frac {10}{x}+x^2\right )} \left (e^5-3 x^2\right )+\log (x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.40, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {5 x+e^{\frac {10+x^3}{5 x}} \left (30 x^2-30 x^3-6 x^5+e^5 \left (-10+2 x^3\right )\right )}{25 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{25} \int \frac {5 x+e^{\frac {10+x^3}{5 x}} \left (30 x^2-30 x^3-6 x^5+e^5 \left (-10+2 x^3\right )\right )}{x^2} \, dx\\ &=\frac {1}{25} \int \left (\frac {5}{x}+\frac {2 e^{\frac {10+x^3}{5 x}} \left (-5 e^5+15 x^2-15 \left (1-\frac {e^5}{15}\right ) x^3-3 x^5\right )}{x^2}\right ) \, dx\\ &=\frac {\log (x)}{5}+\frac {2}{25} \int \frac {e^{\frac {10+x^3}{5 x}} \left (-5 e^5+15 x^2-15 \left (1-\frac {e^5}{15}\right ) x^3-3 x^5\right )}{x^2} \, dx\\ &=\frac {\log (x)}{5}+\frac {2}{25} \int \left (15 e^{\frac {10+x^3}{5 x}}-\frac {5 e^{5+\frac {10+x^3}{5 x}}}{x^2}+e^{\frac {10+x^3}{5 x}} \left (-15+e^5\right ) x-3 e^{\frac {10+x^3}{5 x}} x^3\right ) \, dx\\ &=\frac {\log (x)}{5}-\frac {6}{25} \int e^{\frac {10+x^3}{5 x}} x^3 \, dx-\frac {2}{5} \int \frac {e^{5+\frac {10+x^3}{5 x}}}{x^2} \, dx+\frac {6}{5} \int e^{\frac {10+x^3}{5 x}} \, dx-\frac {1}{25} \left (2 \left (15-e^5\right )\right ) \int e^{\frac {10+x^3}{5 x}} x \, dx\\ &=\frac {\log (x)}{5}-\frac {6}{25} \int e^{\frac {10+x^3}{5 x}} x^3 \, dx-\frac {2}{5} \int \frac {e^{\frac {10+25 x+x^3}{5 x}}}{x^2} \, dx+\frac {6}{5} \int e^{\frac {10+x^3}{5 x}} \, dx-\frac {1}{25} \left (2 \left (15-e^5\right )\right ) \int e^{\frac {10+x^3}{5 x}} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 36, normalized size = 1.12 \begin {gather*} \frac {1}{25} \left (e^{\frac {2}{x}+\frac {x^2}{5}} \left (5 e^5-15 x^2\right )+5 \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 28, normalized size = 0.88 \begin {gather*} -\frac {1}{5} \, {\left (3 \, x^{2} - e^{5}\right )} e^{\left (\frac {x^{3} + 10}{5 \, x}\right )} + \frac {1}{5} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 37, normalized size = 1.16 \begin {gather*} -\frac {3}{5} \, x^{2} e^{\left (\frac {x^{3} + 10}{5 \, x}\right )} + \frac {1}{5} \, e^{\left (\frac {x^{3} + 25 \, x + 10}{5 \, x}\right )} + \frac {1}{5} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 29, normalized size = 0.91
method | result | size |
risch | \(\frac {\ln \relax (x )}{5}+\frac {\left (-15 x^{2}+5 \,{\mathrm e}^{5}\right ) {\mathrm e}^{\frac {x^{3}+10}{5 x}}}{25}\) | \(29\) |
norman | \(\frac {-\frac {3 x^{3} {\mathrm e}^{\frac {x^{3}+10}{5 x}}}{5}+\frac {{\mathrm e}^{5} {\mathrm e}^{\frac {x^{3}+10}{5 x}} x}{5}}{x}+\frac {\ln \relax (x )}{5}\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 29, normalized size = 0.91 \begin {gather*} -\frac {1}{5} \, {\left (3 \, x^{2} - e^{5}\right )} e^{\left (\frac {1}{5} \, x^{2} + \frac {2}{x}\right )} + \frac {1}{5} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.97, size = 38, normalized size = 1.19 \begin {gather*} \frac {\ln \relax (x)}{5}-\frac {3\,x^2\,{\left ({\mathrm {e}}^{x^2}\right )}^{1/5}\,{\mathrm {e}}^{2/x}}{5}+\frac {{\left ({\mathrm {e}}^{x^2}\right )}^{1/5}\,{\mathrm {e}}^5\,{\mathrm {e}}^{2/x}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 24, normalized size = 0.75 \begin {gather*} \frac {\left (- 3 x^{2} + e^{5}\right ) e^{\frac {\frac {x^{3}}{5} + 2}{x}}}{5} + \frac {\log {\relax (x )}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________