Optimal. Leaf size=22 \[ 5 e^x \log \left (-e^{2 x}-\frac {3}{x}+10 x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.17, antiderivative size = 25, normalized size of antiderivative = 1.14, number of steps used = 1, number of rules used = 1, integrand size = 81, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.012, Rules used = {2288} \begin {gather*} 5 e^x \log \left (-\frac {-10 x^2+e^{2 x} x+3}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=5 e^x \log \left (-\frac {3+e^{2 x} x-10 x^2}{x}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 22, normalized size = 1.00 \begin {gather*} 5 e^x \log \left (-e^{2 x}-\frac {3}{x}+10 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.00, size = 23, normalized size = 1.05 \begin {gather*} 5 \, e^{x} \log \left (\frac {10 \, x^{2} - x e^{\left (2 \, x\right )} - 3}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 26, normalized size = 1.18 \begin {gather*} 5 \, e^{x} \log \left (10 \, x^{2} - x e^{\left (2 \, x\right )} - 3\right ) - 5 \, e^{x} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.23, size = 189, normalized size = 8.59
method | result | size |
risch | \(5 \,{\mathrm e}^{x} \ln \left (-\frac {x \,{\mathrm e}^{2 x}}{10}+x^{2}-\frac {3}{10}\right )-5 \,{\mathrm e}^{x} \ln \relax (x )+\frac {5 i \pi \,\mathrm {csgn}\left (i \left (-\frac {x \,{\mathrm e}^{2 x}}{10}+x^{2}-\frac {3}{10}\right )\right ) \mathrm {csgn}\left (\frac {i \left (-\frac {x \,{\mathrm e}^{2 x}}{10}+x^{2}-\frac {3}{10}\right )}{x}\right )^{2} {\mathrm e}^{x}}{2}-\frac {5 i \pi \,\mathrm {csgn}\left (i \left (-\frac {x \,{\mathrm e}^{2 x}}{10}+x^{2}-\frac {3}{10}\right )\right ) \mathrm {csgn}\left (\frac {i \left (-\frac {x \,{\mathrm e}^{2 x}}{10}+x^{2}-\frac {3}{10}\right )}{x}\right ) \mathrm {csgn}\left (\frac {i}{x}\right ) {\mathrm e}^{x}}{2}+\frac {5 i \pi \mathrm {csgn}\left (\frac {i \left (-\frac {x \,{\mathrm e}^{2 x}}{10}+x^{2}-\frac {3}{10}\right )}{x}\right )^{2} \mathrm {csgn}\left (\frac {i}{x}\right ) {\mathrm e}^{x}}{2}-\frac {5 i \pi \mathrm {csgn}\left (\frac {i \left (-\frac {x \,{\mathrm e}^{2 x}}{10}+x^{2}-\frac {3}{10}\right )}{x}\right )^{3} {\mathrm e}^{x}}{2}+5 \,{\mathrm e}^{x} \ln \relax (2)+5 \,{\mathrm e}^{x} \ln \relax (5)\) | \(189\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 26, normalized size = 1.18 \begin {gather*} 5 \, e^{x} \log \left (10 \, x^{2} - x e^{\left (2 \, x\right )} - 3\right ) - 5 \, e^{x} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.60, size = 20, normalized size = 0.91 \begin {gather*} 5\,{\mathrm {e}}^x\,\ln \left (10\,x-{\mathrm {e}}^{2\,x}-\frac {3}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________