Optimal. Leaf size=33 \[ e^x+\frac {5 x}{4}-x^2 \left (2-(-5+x)^2+\frac {1}{3} (-x+\log (x))\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 33, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {12, 2194, 2304} \begin {gather*} x^4-\frac {29 x^3}{3}+23 x^2-\frac {1}{3} x^2 \log (x)+\frac {5 x}{4}+e^x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rule 2304
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{12} \int \left (15+12 e^x+548 x-348 x^2+48 x^3-8 x \log (x)\right ) \, dx\\ &=\frac {5 x}{4}+\frac {137 x^2}{6}-\frac {29 x^3}{3}+x^4-\frac {2}{3} \int x \log (x) \, dx+\int e^x \, dx\\ &=e^x+\frac {5 x}{4}+23 x^2-\frac {29 x^3}{3}+x^4-\frac {1}{3} x^2 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 33, normalized size = 1.00 \begin {gather*} e^x+\frac {5 x}{4}+23 x^2-\frac {29 x^3}{3}+x^4-\frac {1}{3} x^2 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.82, size = 26, normalized size = 0.79 \begin {gather*} x^{4} - \frac {29}{3} \, x^{3} - \frac {1}{3} \, x^{2} \log \relax (x) + 23 \, x^{2} + \frac {5}{4} \, x + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 26, normalized size = 0.79 \begin {gather*} x^{4} - \frac {29}{3} \, x^{3} - \frac {1}{3} \, x^{2} \log \relax (x) + 23 \, x^{2} + \frac {5}{4} \, x + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 27, normalized size = 0.82
method | result | size |
default | \(\frac {5 x}{4}+23 x^{2}-\frac {29 x^{3}}{3}+x^{4}-\frac {x^{2} \ln \relax (x )}{3}+{\mathrm e}^{x}\) | \(27\) |
norman | \(\frac {5 x}{4}+23 x^{2}-\frac {29 x^{3}}{3}+x^{4}-\frac {x^{2} \ln \relax (x )}{3}+{\mathrm e}^{x}\) | \(27\) |
risch | \(\frac {5 x}{4}+23 x^{2}-\frac {29 x^{3}}{3}+x^{4}-\frac {x^{2} \ln \relax (x )}{3}+{\mathrm e}^{x}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 26, normalized size = 0.79 \begin {gather*} x^{4} - \frac {29}{3} \, x^{3} - \frac {1}{3} \, x^{2} \log \relax (x) + 23 \, x^{2} + \frac {5}{4} \, x + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.23, size = 26, normalized size = 0.79 \begin {gather*} \frac {5\,x}{4}+{\mathrm {e}}^x-\frac {x^2\,\ln \relax (x)}{3}+23\,x^2-\frac {29\,x^3}{3}+x^4 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 31, normalized size = 0.94 \begin {gather*} x^{4} - \frac {29 x^{3}}{3} - \frac {x^{2} \log {\relax (x )}}{3} + 23 x^{2} + \frac {5 x}{4} + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________