Optimal. Leaf size=29 \[ x+\left (3+\frac {1}{x}\right ) \left (\log (2)-\log ^2\left (\frac {x}{-4 e^{2 x}+x}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 3.76, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-x^3+e^{2 x} \left (4 x^2-4 \log (2)\right )+x \log (2)+e^{2 x} \left (-8-8 x+48 x^2\right ) \log \left (-\frac {x}{4 e^{2 x}-x}\right )+\left (4 e^{2 x}-x\right ) \log ^2\left (-\frac {x}{4 e^{2 x}-x}\right )}{4 e^{2 x} x^2-x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x^2-\log (2)+\frac {8 e^{2 x} \left (-1-x+6 x^2\right ) \log \left (-\frac {x}{4 e^{2 x}-x}\right )}{4 e^{2 x}-x}+\log ^2\left (-\frac {x}{4 e^{2 x}-x}\right )}{x^2} \, dx\\ &=\int \left (\frac {2 \left (-1-x+6 x^2\right ) \log \left (-\frac {x}{4 e^{2 x}-x}\right )}{\left (4 e^{2 x}-x\right ) x}+\frac {x^2-\log (2)-2 \log \left (-\frac {x}{4 e^{2 x}-x}\right )-2 x \log \left (-\frac {x}{4 e^{2 x}-x}\right )+12 x^2 \log \left (-\frac {x}{4 e^{2 x}-x}\right )+\log ^2\left (-\frac {x}{4 e^{2 x}-x}\right )}{x^2}\right ) \, dx\\ &=2 \int \frac {\left (-1-x+6 x^2\right ) \log \left (-\frac {x}{4 e^{2 x}-x}\right )}{\left (4 e^{2 x}-x\right ) x} \, dx+\int \frac {x^2-\log (2)-2 \log \left (-\frac {x}{4 e^{2 x}-x}\right )-2 x \log \left (-\frac {x}{4 e^{2 x}-x}\right )+12 x^2 \log \left (-\frac {x}{4 e^{2 x}-x}\right )+\log ^2\left (-\frac {x}{4 e^{2 x}-x}\right )}{x^2} \, dx\\ &=-\left (2 \int \frac {4 e^{2 x} (1-2 x) \left (-\int \frac {1}{4 e^{2 x}-x} \, dx+6 \int \frac {x}{4 e^{2 x}-x} \, dx-\int \frac {1}{4 e^{2 x} x-x^2} \, dx\right )}{\left (4 e^{2 x}-x\right ) x} \, dx\right )-\left (2 \log \left (-\frac {x}{4 e^{2 x}-x}\right )\right ) \int \frac {1}{4 e^{2 x}-x} \, dx-\left (2 \log \left (-\frac {x}{4 e^{2 x}-x}\right )\right ) \int \frac {1}{\left (4 e^{2 x}-x\right ) x} \, dx+\left (12 \log \left (-\frac {x}{4 e^{2 x}-x}\right )\right ) \int \frac {x}{4 e^{2 x}-x} \, dx+\int \left (\frac {x^2-\log (2)}{x^2}+\frac {2 \left (-1-x+6 x^2\right ) \log \left (-\frac {x}{4 e^{2 x}-x}\right )}{x^2}+\frac {\log ^2\left (-\frac {x}{4 e^{2 x}-x}\right )}{x^2}\right ) \, dx\\ &=2 \int \frac {\left (-1-x+6 x^2\right ) \log \left (-\frac {x}{4 e^{2 x}-x}\right )}{x^2} \, dx-8 \int \frac {e^{2 x} (1-2 x) \left (-\int \frac {1}{4 e^{2 x}-x} \, dx+6 \int \frac {x}{4 e^{2 x}-x} \, dx-\int \frac {1}{4 e^{2 x} x-x^2} \, dx\right )}{\left (4 e^{2 x}-x\right ) x} \, dx-\left (2 \log \left (-\frac {x}{4 e^{2 x}-x}\right )\right ) \int \frac {1}{4 e^{2 x}-x} \, dx-\left (2 \log \left (-\frac {x}{4 e^{2 x}-x}\right )\right ) \int \frac {1}{\left (4 e^{2 x}-x\right ) x} \, dx+\left (12 \log \left (-\frac {x}{4 e^{2 x}-x}\right )\right ) \int \frac {x}{4 e^{2 x}-x} \, dx+\int \frac {x^2-\log (2)}{x^2} \, dx+\int \frac {\log ^2\left (-\frac {x}{4 e^{2 x}-x}\right )}{x^2} \, dx\\ &=2 \int \left (6 \log \left (-\frac {x}{4 e^{2 x}-x}\right )-\frac {\log \left (-\frac {x}{4 e^{2 x}-x}\right )}{x^2}-\frac {\log \left (-\frac {x}{4 e^{2 x}-x}\right )}{x}\right ) \, dx-8 \int \left (\frac {2 e^{2 x} \left (\int \frac {1}{4 e^{2 x}-x} \, dx-6 \int \frac {x}{4 e^{2 x}-x} \, dx+\int \frac {1}{4 e^{2 x} x-x^2} \, dx\right )}{4 e^{2 x}-x}-\frac {e^{2 x} \left (\int \frac {1}{4 e^{2 x}-x} \, dx-6 \int \frac {x}{4 e^{2 x}-x} \, dx+\int \frac {1}{4 e^{2 x} x-x^2} \, dx\right )}{\left (4 e^{2 x}-x\right ) x}\right ) \, dx-\left (2 \log \left (-\frac {x}{4 e^{2 x}-x}\right )\right ) \int \frac {1}{4 e^{2 x}-x} \, dx-\left (2 \log \left (-\frac {x}{4 e^{2 x}-x}\right )\right ) \int \frac {1}{\left (4 e^{2 x}-x\right ) x} \, dx+\left (12 \log \left (-\frac {x}{4 e^{2 x}-x}\right )\right ) \int \frac {x}{4 e^{2 x}-x} \, dx+\int \left (1-\frac {\log (2)}{x^2}\right ) \, dx+\int \frac {\log ^2\left (-\frac {x}{4 e^{2 x}-x}\right )}{x^2} \, dx\\ &=x+\frac {\log (2)}{x}-2 \int \frac {\log \left (-\frac {x}{4 e^{2 x}-x}\right )}{x^2} \, dx-2 \int \frac {\log \left (-\frac {x}{4 e^{2 x}-x}\right )}{x} \, dx+8 \int \frac {e^{2 x} \left (\int \frac {1}{4 e^{2 x}-x} \, dx-6 \int \frac {x}{4 e^{2 x}-x} \, dx+\int \frac {1}{4 e^{2 x} x-x^2} \, dx\right )}{\left (4 e^{2 x}-x\right ) x} \, dx+12 \int \log \left (-\frac {x}{4 e^{2 x}-x}\right ) \, dx-16 \int \frac {e^{2 x} \left (\int \frac {1}{4 e^{2 x}-x} \, dx-6 \int \frac {x}{4 e^{2 x}-x} \, dx+\int \frac {1}{4 e^{2 x} x-x^2} \, dx\right )}{4 e^{2 x}-x} \, dx-\left (2 \log \left (-\frac {x}{4 e^{2 x}-x}\right )\right ) \int \frac {1}{4 e^{2 x}-x} \, dx-\left (2 \log \left (-\frac {x}{4 e^{2 x}-x}\right )\right ) \int \frac {1}{\left (4 e^{2 x}-x\right ) x} \, dx+\left (12 \log \left (-\frac {x}{4 e^{2 x}-x}\right )\right ) \int \frac {x}{4 e^{2 x}-x} \, dx+\int \frac {\log ^2\left (-\frac {x}{4 e^{2 x}-x}\right )}{x^2} \, dx\\ &=x+\frac {\log (2)}{x}+\frac {2 \log \left (-\frac {x}{4 e^{2 x}-x}\right )}{x}+12 x \log \left (-\frac {x}{4 e^{2 x}-x}\right )-2 \int \frac {4 e^{2 x} (1-2 x)}{\left (4 e^{2 x}-x\right ) x^2} \, dx-2 \int \frac {\log \left (-\frac {x}{4 e^{2 x}-x}\right )}{x} \, dx+8 \int \left (\frac {e^{2 x} \int \frac {1}{4 e^{2 x}-x} \, dx}{\left (4 e^{2 x}-x\right ) x}-\frac {6 e^{2 x} \int \frac {x}{4 e^{2 x}-x} \, dx}{\left (4 e^{2 x}-x\right ) x}+\frac {e^{2 x} \int \frac {1}{4 e^{2 x} x-x^2} \, dx}{\left (4 e^{2 x}-x\right ) x}\right ) \, dx-12 \int \frac {4 e^{2 x} (1-2 x)}{4 e^{2 x}-x} \, dx-16 \int \left (\frac {e^{2 x} \int \frac {1}{4 e^{2 x}-x} \, dx}{4 e^{2 x}-x}-\frac {6 e^{2 x} \int \frac {x}{4 e^{2 x}-x} \, dx}{4 e^{2 x}-x}+\frac {e^{2 x} \int \frac {1}{4 e^{2 x} x-x^2} \, dx}{4 e^{2 x}-x}\right ) \, dx-\left (2 \log \left (-\frac {x}{4 e^{2 x}-x}\right )\right ) \int \frac {1}{4 e^{2 x}-x} \, dx-\left (2 \log \left (-\frac {x}{4 e^{2 x}-x}\right )\right ) \int \frac {1}{\left (4 e^{2 x}-x\right ) x} \, dx+\left (12 \log \left (-\frac {x}{4 e^{2 x}-x}\right )\right ) \int \frac {x}{4 e^{2 x}-x} \, dx+\int \frac {\log ^2\left (-\frac {x}{4 e^{2 x}-x}\right )}{x^2} \, dx\\ &=x+\frac {\log (2)}{x}+\frac {2 \log \left (-\frac {x}{4 e^{2 x}-x}\right )}{x}+12 x \log \left (-\frac {x}{4 e^{2 x}-x}\right )-2 \int \frac {\log \left (-\frac {x}{4 e^{2 x}-x}\right )}{x} \, dx-8 \int \frac {e^{2 x} (1-2 x)}{\left (4 e^{2 x}-x\right ) x^2} \, dx+8 \int \frac {e^{2 x} \int \frac {1}{4 e^{2 x}-x} \, dx}{\left (4 e^{2 x}-x\right ) x} \, dx+8 \int \frac {e^{2 x} \int \frac {1}{4 e^{2 x} x-x^2} \, dx}{\left (4 e^{2 x}-x\right ) x} \, dx-16 \int \frac {e^{2 x} \int \frac {1}{4 e^{2 x}-x} \, dx}{4 e^{2 x}-x} \, dx-16 \int \frac {e^{2 x} \int \frac {1}{4 e^{2 x} x-x^2} \, dx}{4 e^{2 x}-x} \, dx-48 \int \frac {e^{2 x} (1-2 x)}{4 e^{2 x}-x} \, dx-48 \int \frac {e^{2 x} \int \frac {x}{4 e^{2 x}-x} \, dx}{\left (4 e^{2 x}-x\right ) x} \, dx+96 \int \frac {e^{2 x} \int \frac {x}{4 e^{2 x}-x} \, dx}{4 e^{2 x}-x} \, dx-\left (2 \log \left (-\frac {x}{4 e^{2 x}-x}\right )\right ) \int \frac {1}{4 e^{2 x}-x} \, dx-\left (2 \log \left (-\frac {x}{4 e^{2 x}-x}\right )\right ) \int \frac {1}{\left (4 e^{2 x}-x\right ) x} \, dx+\left (12 \log \left (-\frac {x}{4 e^{2 x}-x}\right )\right ) \int \frac {x}{4 e^{2 x}-x} \, dx+\int \frac {\log ^2\left (-\frac {x}{4 e^{2 x}-x}\right )}{x^2} \, dx\\ &=x+\frac {\log (2)}{x}+\frac {2 \log \left (-\frac {x}{4 e^{2 x}-x}\right )}{x}+12 x \log \left (-\frac {x}{4 e^{2 x}-x}\right )-2 \int \frac {\log \left (-\frac {x}{4 e^{2 x}-x}\right )}{x} \, dx-8 \int \left (\frac {e^{2 x}}{\left (4 e^{2 x}-x\right ) x^2}-\frac {2 e^{2 x}}{\left (4 e^{2 x}-x\right ) x}\right ) \, dx+8 \int \frac {e^{2 x} \int \frac {1}{4 e^{2 x}-x} \, dx}{\left (4 e^{2 x}-x\right ) x} \, dx+8 \int \frac {e^{2 x} \int \frac {1}{4 e^{2 x} x-x^2} \, dx}{\left (4 e^{2 x}-x\right ) x} \, dx-16 \int \frac {e^{2 x} \int \frac {1}{4 e^{2 x}-x} \, dx}{4 e^{2 x}-x} \, dx-16 \int \frac {e^{2 x} \int \frac {1}{4 e^{2 x} x-x^2} \, dx}{4 e^{2 x}-x} \, dx-48 \int \left (\frac {e^{2 x}}{4 e^{2 x}-x}-\frac {2 e^{2 x} x}{4 e^{2 x}-x}\right ) \, dx-48 \int \frac {e^{2 x} \int \frac {x}{4 e^{2 x}-x} \, dx}{\left (4 e^{2 x}-x\right ) x} \, dx+96 \int \frac {e^{2 x} \int \frac {x}{4 e^{2 x}-x} \, dx}{4 e^{2 x}-x} \, dx-\left (2 \log \left (-\frac {x}{4 e^{2 x}-x}\right )\right ) \int \frac {1}{4 e^{2 x}-x} \, dx-\left (2 \log \left (-\frac {x}{4 e^{2 x}-x}\right )\right ) \int \frac {1}{\left (4 e^{2 x}-x\right ) x} \, dx+\left (12 \log \left (-\frac {x}{4 e^{2 x}-x}\right )\right ) \int \frac {x}{4 e^{2 x}-x} \, dx+\int \frac {\log ^2\left (-\frac {x}{4 e^{2 x}-x}\right )}{x^2} \, dx\\ &=x+\frac {\log (2)}{x}+\frac {2 \log \left (-\frac {x}{4 e^{2 x}-x}\right )}{x}+12 x \log \left (-\frac {x}{4 e^{2 x}-x}\right )-2 \int \frac {\log \left (-\frac {x}{4 e^{2 x}-x}\right )}{x} \, dx-8 \int \frac {e^{2 x}}{\left (4 e^{2 x}-x\right ) x^2} \, dx+8 \int \frac {e^{2 x} \int \frac {1}{4 e^{2 x}-x} \, dx}{\left (4 e^{2 x}-x\right ) x} \, dx+8 \int \frac {e^{2 x} \int \frac {1}{4 e^{2 x} x-x^2} \, dx}{\left (4 e^{2 x}-x\right ) x} \, dx+16 \int \frac {e^{2 x}}{\left (4 e^{2 x}-x\right ) x} \, dx-16 \int \frac {e^{2 x} \int \frac {1}{4 e^{2 x}-x} \, dx}{4 e^{2 x}-x} \, dx-16 \int \frac {e^{2 x} \int \frac {1}{4 e^{2 x} x-x^2} \, dx}{4 e^{2 x}-x} \, dx-48 \int \frac {e^{2 x}}{4 e^{2 x}-x} \, dx-48 \int \frac {e^{2 x} \int \frac {x}{4 e^{2 x}-x} \, dx}{\left (4 e^{2 x}-x\right ) x} \, dx+96 \int \frac {e^{2 x} x}{4 e^{2 x}-x} \, dx+96 \int \frac {e^{2 x} \int \frac {x}{4 e^{2 x}-x} \, dx}{4 e^{2 x}-x} \, dx-\left (2 \log \left (-\frac {x}{4 e^{2 x}-x}\right )\right ) \int \frac {1}{4 e^{2 x}-x} \, dx-\left (2 \log \left (-\frac {x}{4 e^{2 x}-x}\right )\right ) \int \frac {1}{\left (4 e^{2 x}-x\right ) x} \, dx+\left (12 \log \left (-\frac {x}{4 e^{2 x}-x}\right )\right ) \int \frac {x}{4 e^{2 x}-x} \, dx+\int \frac {\log ^2\left (-\frac {x}{4 e^{2 x}-x}\right )}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.48, size = 36, normalized size = 1.24 \begin {gather*} x+\frac {\log (2)}{x}+\frac {(-1-3 x) \log ^2\left (-\frac {x}{4 e^{2 x}-x}\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 36, normalized size = 1.24 \begin {gather*} -\frac {{\left (3 \, x + 1\right )} \log \left (\frac {x}{x - 4 \, e^{\left (2 \, x\right )}}\right )^{2} - x^{2} - \log \relax (2)}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{3} - 8 \, {\left (6 \, x^{2} - x - 1\right )} e^{\left (2 \, x\right )} \log \left (\frac {x}{x - 4 \, e^{\left (2 \, x\right )}}\right ) + {\left (x - 4 \, e^{\left (2 \, x\right )}\right )} \log \left (\frac {x}{x - 4 \, e^{\left (2 \, x\right )}}\right )^{2} - 4 \, {\left (x^{2} - \log \relax (2)\right )} e^{\left (2 \, x\right )} - x \log \relax (2)}{x^{3} - 4 \, x^{2} e^{\left (2 \, x\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.27, size = 934, normalized size = 32.21
method | result | size |
risch | \(-\frac {\left (3 x +1\right ) \ln \left (x -4 \,{\mathrm e}^{2 x}\right )^{2}}{x}+\frac {\left (i \pi \,\mathrm {csgn}\left (\frac {i}{x -4 \,{\mathrm e}^{2 x}}\right ) \mathrm {csgn}\left (\frac {i x}{x -4 \,{\mathrm e}^{2 x}}\right )^{2}-i \pi \,\mathrm {csgn}\left (\frac {i}{x -4 \,{\mathrm e}^{2 x}}\right ) \mathrm {csgn}\left (\frac {i x}{x -4 \,{\mathrm e}^{2 x}}\right ) \mathrm {csgn}\left (i x \right )-i \pi \mathrm {csgn}\left (\frac {i x}{x -4 \,{\mathrm e}^{2 x}}\right )^{3}+i \pi \mathrm {csgn}\left (\frac {i x}{x -4 \,{\mathrm e}^{2 x}}\right )^{2} \mathrm {csgn}\left (i x \right )+6 x \ln \relax (x )+2 \ln \relax (x )\right ) \ln \left (x -4 \,{\mathrm e}^{2 x}\right )}{x}+\frac {4 \ln \relax (2)-4 \ln \relax (x )^{2}+4 x^{2}-12 x \ln \relax (x )^{2}-2 \pi ^{2} \mathrm {csgn}\left (\frac {i}{x -4 \,{\mathrm e}^{2 x}}\right )^{2} \mathrm {csgn}\left (\frac {i x}{x -4 \,{\mathrm e}^{2 x}}\right )^{3} \mathrm {csgn}\left (i x \right )+4 \pi ^{2} \mathrm {csgn}\left (\frac {i}{x -4 \,{\mathrm e}^{2 x}}\right ) \mathrm {csgn}\left (\frac {i x}{x -4 \,{\mathrm e}^{2 x}}\right )^{4} \mathrm {csgn}\left (i x \right )+\pi ^{2} \mathrm {csgn}\left (\frac {i}{x -4 \,{\mathrm e}^{2 x}}\right )^{2} \mathrm {csgn}\left (\frac {i x}{x -4 \,{\mathrm e}^{2 x}}\right )^{2} \mathrm {csgn}\left (i x \right )^{2}-2 \pi ^{2} \mathrm {csgn}\left (\frac {i}{x -4 \,{\mathrm e}^{2 x}}\right ) \mathrm {csgn}\left (\frac {i x}{x -4 \,{\mathrm e}^{2 x}}\right )^{3} \mathrm {csgn}\left (i x \right )^{2}+4 i \ln \relax (x ) \pi \mathrm {csgn}\left (\frac {i x}{x -4 \,{\mathrm e}^{2 x}}\right )^{3}-12 i \pi \ln \relax (x ) \mathrm {csgn}\left (\frac {i}{x -4 \,{\mathrm e}^{2 x}}\right ) \mathrm {csgn}\left (\frac {i x}{x -4 \,{\mathrm e}^{2 x}}\right )^{2} x -12 i \pi \ln \relax (x ) \mathrm {csgn}\left (\frac {i x}{x -4 \,{\mathrm e}^{2 x}}\right )^{2} \mathrm {csgn}\left (i x \right ) x +4 i \ln \relax (x ) \pi \,\mathrm {csgn}\left (\frac {i}{x -4 \,{\mathrm e}^{2 x}}\right ) \mathrm {csgn}\left (\frac {i x}{x -4 \,{\mathrm e}^{2 x}}\right ) \mathrm {csgn}\left (i x \right )+12 i \pi \ln \left (-\frac {x}{4}+{\mathrm e}^{2 x}\right ) \mathrm {csgn}\left (\frac {i}{x -4 \,{\mathrm e}^{2 x}}\right ) \mathrm {csgn}\left (\frac {i x}{x -4 \,{\mathrm e}^{2 x}}\right )^{2} x +12 i \pi \ln \left (-\frac {x}{4}+{\mathrm e}^{2 x}\right ) \mathrm {csgn}\left (\frac {i x}{x -4 \,{\mathrm e}^{2 x}}\right )^{2} \mathrm {csgn}\left (i x \right ) x +\pi ^{2} \mathrm {csgn}\left (\frac {i x}{x -4 \,{\mathrm e}^{2 x}}\right )^{6}-4 i \ln \relax (x ) \pi \mathrm {csgn}\left (\frac {i x}{x -4 \,{\mathrm e}^{2 x}}\right )^{2} \mathrm {csgn}\left (i x \right )-12 i \pi \ln \left (-\frac {x}{4}+{\mathrm e}^{2 x}\right ) \mathrm {csgn}\left (\frac {i x}{x -4 \,{\mathrm e}^{2 x}}\right )^{3} x +12 i \pi \ln \relax (x ) \mathrm {csgn}\left (\frac {i x}{x -4 \,{\mathrm e}^{2 x}}\right )^{3} x -4 i \ln \relax (x ) \pi \,\mathrm {csgn}\left (\frac {i}{x -4 \,{\mathrm e}^{2 x}}\right ) \mathrm {csgn}\left (\frac {i x}{x -4 \,{\mathrm e}^{2 x}}\right )^{2}+12 i \pi \ln \relax (x ) \mathrm {csgn}\left (\frac {i}{x -4 \,{\mathrm e}^{2 x}}\right ) \mathrm {csgn}\left (\frac {i x}{x -4 \,{\mathrm e}^{2 x}}\right ) \mathrm {csgn}\left (i x \right ) x -12 i \pi \ln \left (-\frac {x}{4}+{\mathrm e}^{2 x}\right ) \mathrm {csgn}\left (\frac {i}{x -4 \,{\mathrm e}^{2 x}}\right ) \mathrm {csgn}\left (\frac {i x}{x -4 \,{\mathrm e}^{2 x}}\right ) \mathrm {csgn}\left (i x \right ) x +\pi ^{2} \mathrm {csgn}\left (\frac {i x}{x -4 \,{\mathrm e}^{2 x}}\right )^{4} \mathrm {csgn}\left (i x \right )^{2}+\pi ^{2} \mathrm {csgn}\left (\frac {i}{x -4 \,{\mathrm e}^{2 x}}\right )^{2} \mathrm {csgn}\left (\frac {i x}{x -4 \,{\mathrm e}^{2 x}}\right )^{4}-2 \pi ^{2} \mathrm {csgn}\left (\frac {i}{x -4 \,{\mathrm e}^{2 x}}\right ) \mathrm {csgn}\left (\frac {i x}{x -4 \,{\mathrm e}^{2 x}}\right )^{5}-2 \pi ^{2} \mathrm {csgn}\left (\frac {i x}{x -4 \,{\mathrm e}^{2 x}}\right )^{5} \mathrm {csgn}\left (i x \right )}{4 x}\) | \(934\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 60, normalized size = 2.07 \begin {gather*} -\frac {{\left (3 \, x + 1\right )} \log \left (x - 4 \, e^{\left (2 \, x\right )}\right )^{2} - 2 \, {\left (3 \, x + 1\right )} \log \left (x - 4 \, e^{\left (2 \, x\right )}\right ) \log \relax (x) + {\left (3 \, x + 1\right )} \log \relax (x)^{2} - x^{2} - \log \relax (2)}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.62, size = 30, normalized size = 1.03 \begin {gather*} x-{\ln \left (\frac {x}{x-4\,{\mathrm {e}}^{2\,x}}\right )}^2\,\left (\frac {1}{x}+3\right )+\frac {\ln \relax (2)}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.48, size = 29, normalized size = 1.00 \begin {gather*} x + \frac {\left (- 3 x - 1\right ) \log {\left (- \frac {x}{- x + 4 e^{2 x}} \right )}^{2}}{x} + \frac {\log {\relax (2 )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________