Optimal. Leaf size=26 \[ -1+\frac {x \log (\log (\log (5)))}{5-e^{(7-x) \log ^2(x)}} \]
________________________________________________________________________________________
Rubi [F] time = 5.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (5+e^{(7-x) \log ^2(x)} \left (-1+(14-2 x) \log (x)-x \log ^2(x)\right )\right ) \log (\log (\log (5)))}{25-10 e^{(7-x) \log ^2(x)}+e^{2 (7-x) \log ^2(x)}} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\log (\log (\log (5))) \int \frac {5+e^{(7-x) \log ^2(x)} \left (-1+(14-2 x) \log (x)-x \log ^2(x)\right )}{25-10 e^{(7-x) \log ^2(x)}+e^{2 (7-x) \log ^2(x)}} \, dx\\ &=\log (\log (\log (5))) \int \frac {e^{2 (-7+x) \log ^2(x)} \left (5+e^{(7-x) \log ^2(x)} \left (-1+(14-2 x) \log (x)-x \log ^2(x)\right )\right )}{\left (1-5 e^{(-7+x) \log ^2(x)}\right )^2} \, dx\\ &=\log (\log (\log (5))) \int \left (-\frac {5 e^{2 (-7+x) \log ^2(x)} \log (x) (-14+2 x+x \log (x))}{\left (-1+5 e^{(-7+x) \log ^2(x)}\right )^2}-e^{(-7+x) \log ^2(x)} \left (1-14 \log (x)+2 x \log (x)+x \log ^2(x)\right )+\frac {5 e^{2 (-7+x) \log ^2(x)} \left (1-14 \log (x)+2 x \log (x)+x \log ^2(x)\right )}{-1+5 e^{(-7+x) \log ^2(x)}}\right ) \, dx\\ &=-\left (\log (\log (\log (5))) \int e^{(-7+x) \log ^2(x)} \left (1-14 \log (x)+2 x \log (x)+x \log ^2(x)\right ) \, dx\right )-(5 \log (\log (\log (5)))) \int \frac {e^{2 (-7+x) \log ^2(x)} \log (x) (-14+2 x+x \log (x))}{\left (-1+5 e^{(-7+x) \log ^2(x)}\right )^2} \, dx+(5 \log (\log (\log (5)))) \int \frac {e^{2 (-7+x) \log ^2(x)} \left (1-14 \log (x)+2 x \log (x)+x \log ^2(x)\right )}{-1+5 e^{(-7+x) \log ^2(x)}} \, dx\\ &=-\frac {e^{-\left ((7-x) \log ^2(x)\right )} \left (14 \log (x)-2 x \log (x)-x \log ^2(x)\right ) \log (\log (\log (5)))}{\frac {2 (7-x) \log (x)}{x}-\log ^2(x)}-(5 \log (\log (\log (5)))) \int \left (-\frac {14 e^{2 (-7+x) \log ^2(x)} \log (x)}{\left (-1+5 e^{(-7+x) \log ^2(x)}\right )^2}+\frac {2 e^{2 (-7+x) \log ^2(x)} x \log (x)}{\left (-1+5 e^{(-7+x) \log ^2(x)}\right )^2}+\frac {e^{2 (-7+x) \log ^2(x)} x \log ^2(x)}{\left (-1+5 e^{(-7+x) \log ^2(x)}\right )^2}\right ) \, dx+(5 \log (\log (\log (5)))) \int \left (\frac {e^{2 (-7+x) \log ^2(x)}}{-1+5 e^{(-7+x) \log ^2(x)}}-\frac {14 e^{2 (-7+x) \log ^2(x)} \log (x)}{-1+5 e^{(-7+x) \log ^2(x)}}+\frac {2 e^{2 (-7+x) \log ^2(x)} x \log (x)}{-1+5 e^{(-7+x) \log ^2(x)}}+\frac {e^{2 (-7+x) \log ^2(x)} x \log ^2(x)}{-1+5 e^{(-7+x) \log ^2(x)}}\right ) \, dx\\ &=-\frac {e^{-\left ((7-x) \log ^2(x)\right )} \left (14 \log (x)-2 x \log (x)-x \log ^2(x)\right ) \log (\log (\log (5)))}{\frac {2 (7-x) \log (x)}{x}-\log ^2(x)}+(5 \log (\log (\log (5)))) \int \frac {e^{2 (-7+x) \log ^2(x)}}{-1+5 e^{(-7+x) \log ^2(x)}} \, dx-(5 \log (\log (\log (5)))) \int \frac {e^{2 (-7+x) \log ^2(x)} x \log ^2(x)}{\left (-1+5 e^{(-7+x) \log ^2(x)}\right )^2} \, dx+(5 \log (\log (\log (5)))) \int \frac {e^{2 (-7+x) \log ^2(x)} x \log ^2(x)}{-1+5 e^{(-7+x) \log ^2(x)}} \, dx-(10 \log (\log (\log (5)))) \int \frac {e^{2 (-7+x) \log ^2(x)} x \log (x)}{\left (-1+5 e^{(-7+x) \log ^2(x)}\right )^2} \, dx+(10 \log (\log (\log (5)))) \int \frac {e^{2 (-7+x) \log ^2(x)} x \log (x)}{-1+5 e^{(-7+x) \log ^2(x)}} \, dx+(70 \log (\log (\log (5)))) \int \frac {e^{2 (-7+x) \log ^2(x)} \log (x)}{\left (-1+5 e^{(-7+x) \log ^2(x)}\right )^2} \, dx-(70 \log (\log (\log (5)))) \int \frac {e^{2 (-7+x) \log ^2(x)} \log (x)}{-1+5 e^{(-7+x) \log ^2(x)}} \, dx\\ &=-\frac {e^{-\left ((7-x) \log ^2(x)\right )} \left (14 \log (x)-2 x \log (x)-x \log ^2(x)\right ) \log (\log (\log (5)))}{\frac {2 (7-x) \log (x)}{x}-\log ^2(x)}+(5 \log (\log (\log (5)))) \int \left (\frac {1}{25}+\frac {1}{5} e^{(-7+x) \log ^2(x)}+\frac {1}{25 \left (-1+5 e^{(-7+x) \log ^2(x)}\right )}\right ) \, dx-(5 \log (\log (\log (5)))) \int \frac {e^{2 (-7+x) \log ^2(x)} x \log ^2(x)}{\left (-1+5 e^{(-7+x) \log ^2(x)}\right )^2} \, dx+(5 \log (\log (\log (5)))) \int \frac {e^{2 (-7+x) \log ^2(x)} x \log ^2(x)}{-1+5 e^{(-7+x) \log ^2(x)}} \, dx-(10 \log (\log (\log (5)))) \int \frac {e^{2 (-7+x) \log ^2(x)} x \log (x)}{\left (-1+5 e^{(-7+x) \log ^2(x)}\right )^2} \, dx+(10 \log (\log (\log (5)))) \int \frac {e^{2 (-7+x) \log ^2(x)} x \log (x)}{-1+5 e^{(-7+x) \log ^2(x)}} \, dx+(70 \log (\log (\log (5)))) \int \frac {e^{2 (-7+x) \log ^2(x)} \log (x)}{\left (-1+5 e^{(-7+x) \log ^2(x)}\right )^2} \, dx-(70 \log (\log (\log (5)))) \int \frac {e^{2 (-7+x) \log ^2(x)} \log (x)}{-1+5 e^{(-7+x) \log ^2(x)}} \, dx\\ &=\frac {1}{5} x \log (\log (\log (5)))-\frac {e^{-\left ((7-x) \log ^2(x)\right )} \left (14 \log (x)-2 x \log (x)-x \log ^2(x)\right ) \log (\log (\log (5)))}{\frac {2 (7-x) \log (x)}{x}-\log ^2(x)}+\frac {1}{5} \log (\log (\log (5))) \int \frac {1}{-1+5 e^{(-7+x) \log ^2(x)}} \, dx+\log (\log (\log (5))) \int e^{(-7+x) \log ^2(x)} \, dx-(5 \log (\log (\log (5)))) \int \frac {e^{2 (-7+x) \log ^2(x)} x \log ^2(x)}{\left (-1+5 e^{(-7+x) \log ^2(x)}\right )^2} \, dx+(5 \log (\log (\log (5)))) \int \frac {e^{2 (-7+x) \log ^2(x)} x \log ^2(x)}{-1+5 e^{(-7+x) \log ^2(x)}} \, dx-(10 \log (\log (\log (5)))) \int \frac {e^{2 (-7+x) \log ^2(x)} x \log (x)}{\left (-1+5 e^{(-7+x) \log ^2(x)}\right )^2} \, dx+(10 \log (\log (\log (5)))) \int \frac {e^{2 (-7+x) \log ^2(x)} x \log (x)}{-1+5 e^{(-7+x) \log ^2(x)}} \, dx+(70 \log (\log (\log (5)))) \int \frac {e^{2 (-7+x) \log ^2(x)} \log (x)}{\left (-1+5 e^{(-7+x) \log ^2(x)}\right )^2} \, dx-(70 \log (\log (\log (5)))) \int \frac {e^{2 (-7+x) \log ^2(x)} \log (x)}{-1+5 e^{(-7+x) \log ^2(x)}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.17, size = 27, normalized size = 1.04 \begin {gather*} \frac {1}{5} \left (1+\frac {1}{-1+5 e^{(-7+x) \log ^2(x)}}\right ) x \log (\log (\log (5))) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 21, normalized size = 0.81 \begin {gather*} -\frac {x \log \left (\log \left (\log \relax (5)\right )\right )}{e^{\left (-{\left (x - 7\right )} \log \relax (x)^{2}\right )} - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.30, size = 26, normalized size = 1.00 \begin {gather*} -\frac {x \log \left (\log \left (\log \relax (5)\right )\right )}{e^{\left (-x \log \relax (x)^{2} + 7 \, \log \relax (x)^{2}\right )} - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 22, normalized size = 0.85
method | result | size |
risch | \(-\frac {\ln \left (\ln \left (\ln \relax (5)\right )\right ) x}{{\mathrm e}^{-\left (x -7\right ) \ln \relax (x )^{2}}-5}\) | \(22\) |
norman | \(-\frac {\ln \left (\ln \left (\ln \relax (5)\right )\right ) x}{{\mathrm e}^{\left (-x +7\right ) \ln \relax (x )^{2}}-5}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 34, normalized size = 1.31 \begin {gather*} \frac {x e^{\left (x \log \relax (x)^{2}\right )} \log \left (\log \left (\log \relax (5)\right )\right )}{5 \, e^{\left (x \log \relax (x)^{2}\right )} - e^{\left (7 \, \log \relax (x)^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.67, size = 27, normalized size = 1.04 \begin {gather*} -\frac {x\,\ln \left (\ln \left (\ln \relax (5)\right )\right )}{{\mathrm {e}}^{7\,{\ln \relax (x)}^2}\,{\mathrm {e}}^{-x\,{\ln \relax (x)}^2}-5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 20, normalized size = 0.77 \begin {gather*} - \frac {x \log {\left (\log {\left (\log {\relax (5 )} \right )} \right )}}{e^{\left (7 - x\right ) \log {\relax (x )}^{2}} - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________