Optimal. Leaf size=30 \[ e^x-x-\log \left (-2 x+e^4 x \left (x-\frac {1}{5} (3+x)^2\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.60, antiderivative size = 33, normalized size of antiderivative = 1.10, number of steps used = 7, number of rules used = 5, integrand size = 139, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.036, Rules used = {6688, 6728, 2194, 1628, 628} \begin {gather*} -\log \left (e^4 x^2+e^4 x+9 e^4+10\right )-x+e^x-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 628
Rule 1628
Rule 2194
Rule 6688
Rule 6728
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {10 e^x x-10 (1+x)+e^{4+x} x \left (9+x+x^2\right )-e^4 \left (9+11 x+4 x^2+x^3\right )}{x \left (10+9 e^4+e^4 x+e^4 x^2\right )} \, dx\\ &=\int \left (e^x+\frac {-10-9 e^4-\left (10+11 e^4\right ) x-4 e^4 x^2-e^4 x^3}{x \left (10+9 e^4+e^4 x+e^4 x^2\right )}\right ) \, dx\\ &=\int e^x \, dx+\int \frac {-10-9 e^4-\left (10+11 e^4\right ) x-4 e^4 x^2-e^4 x^3}{x \left (10+9 e^4+e^4 x+e^4 x^2\right )} \, dx\\ &=e^x+\int \left (-1-\frac {1}{x}-\frac {e^4 (1+2 x)}{10+9 e^4+e^4 x+e^4 x^2}\right ) \, dx\\ &=e^x-x-\log (x)-e^4 \int \frac {1+2 x}{10+9 e^4+e^4 x+e^4 x^2} \, dx\\ &=e^x-x-\log (x)-\log \left (10+9 e^4+e^4 x+e^4 x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 26, normalized size = 0.87 \begin {gather*} e^x-x-\log (x)-\log \left (10+e^4 \left (9+x+x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 26, normalized size = 0.87 \begin {gather*} -x + e^{x} - \log \left ({\left (x^{3} + x^{2} + 9 \, x\right )} e^{4} + 10 \, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 29, normalized size = 0.97 \begin {gather*} -x + e^{x} - \log \left (x^{2} e^{4} + x e^{4} + 9 \, e^{4} + 10\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.19, size = 30, normalized size = 1.00
method | result | size |
default | \(-x -\ln \relax (x )-\ln \left (x^{2} {\mathrm e}^{4}+x \,{\mathrm e}^{4}+9 \,{\mathrm e}^{4}+10\right )+{\mathrm e}^{x}\) | \(30\) |
norman | \(\frac {{\mathrm e}^{x} x -x^{2}}{x}-\ln \relax (x )-\ln \left (x^{2} {\mathrm e}^{4}+x \,{\mathrm e}^{4}+9 \,{\mathrm e}^{4}+10\right )\) | \(39\) |
risch | \(-x -\ln \left (x^{3}+x^{2}+9 x \right )+{\mathrm e}^{x}-\ln \relax (5)+4+\ln \relax (x )+\ln \left (x^{2}+x +9\right )-\frac {i \pi \,\mathrm {csgn}\left (i x \left (x^{2}+x +9\right )\right ) \left (-\mathrm {csgn}\left (i x \left (x^{2}+x +9\right )\right )+\mathrm {csgn}\left (i x \right )\right ) \left (-\mathrm {csgn}\left (i x \left (x^{2}+x +9\right )\right )+\mathrm {csgn}\left (i \left (x^{2}+x +9\right )\right )\right )}{2}+i \pi \mathrm {csgn}\left (i x \left (x^{2}+x +9\right )\right )^{2} \left (\mathrm {csgn}\left (i x \left (x^{2}+x +9\right )\right )-1\right )-\ln \left (2 x -\frac {x \left (x^{2}+x +9\right ) {\mathrm e}^{4} {\mathrm e}^{\frac {i \pi \mathrm {csgn}\left (i x \left (x^{2}+x +9\right )\right )^{3}}{2}} {\mathrm e}^{\frac {i \pi \mathrm {csgn}\left (i x \left (x^{2}+x +9\right )\right )^{2} \mathrm {csgn}\left (i x \right )}{2}} {\mathrm e}^{\frac {i \pi \mathrm {csgn}\left (i x \left (x^{2}+x +9\right )\right )^{2} \mathrm {csgn}\left (i \left (x^{2}+x +9\right )\right )}{2}} {\mathrm e}^{-\frac {i \pi \,\mathrm {csgn}\left (i x \left (x^{2}+x +9\right )\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left (x^{2}+x +9\right )\right )}{2}}}{5}\right )\) | \(240\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.53, size = 703, normalized size = 23.43 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.38, size = 24, normalized size = 0.80 \begin {gather*} {\mathrm {e}}^x-\ln \left (9\,x+10\,x\,{\mathrm {e}}^{-4}+x^2+x^3\right )-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.61, size = 27, normalized size = 0.90 \begin {gather*} - x + e^{x} - \log {\left (x^{3} e^{4} + x^{2} e^{4} + x \left (10 + 9 e^{4}\right ) \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________