Optimal. Leaf size=27 \[ \frac {3+\log \left (-\frac {e^x}{4 x}\right )}{5-\frac {x^3}{\log (x)}} \]
________________________________________________________________________________________
Rubi [F] time = 1.74, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-3 x^3+\left (10 x^3-x^4\right ) \log (x)+(-5+5 x) \log ^2(x)+\log \left (-\frac {e^x}{4 x}\right ) \left (-x^3+3 x^3 \log (x)\right )}{x^7-10 x^4 \log (x)+25 x \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-3 x^3+\left (10 x^3-x^4\right ) \log (x)+(-5+5 x) \log ^2(x)+\log \left (-\frac {e^x}{4 x}\right ) \left (-x^3+3 x^3 \log (x)\right )}{x \left (x^3-5 \log (x)\right )^2} \, dx\\ &=\int \left (\frac {-1+x}{5 x}+\frac {x^2 \left (-5+3 x^3\right ) \left (3+\log \left (-\frac {e^x}{4 x}\right )\right )}{5 \left (x^3-5 \log (x)\right )^2}-\frac {x^2 \left (8+x+3 \log \left (-\frac {e^x}{4 x}\right )\right )}{5 \left (x^3-5 \log (x)\right )}\right ) \, dx\\ &=\frac {1}{5} \int \frac {-1+x}{x} \, dx+\frac {1}{5} \int \frac {x^2 \left (-5+3 x^3\right ) \left (3+\log \left (-\frac {e^x}{4 x}\right )\right )}{\left (x^3-5 \log (x)\right )^2} \, dx-\frac {1}{5} \int \frac {x^2 \left (8+x+3 \log \left (-\frac {e^x}{4 x}\right )\right )}{x^3-5 \log (x)} \, dx\\ &=\frac {1}{5} \int \left (1-\frac {1}{x}\right ) \, dx+\frac {1}{5} \int \left (-\frac {5 x^2 \left (3+\log \left (-\frac {e^x}{4 x}\right )\right )}{\left (x^3-5 \log (x)\right )^2}+\frac {3 x^5 \left (3+\log \left (-\frac {e^x}{4 x}\right )\right )}{\left (x^3-5 \log (x)\right )^2}\right ) \, dx-\frac {1}{5} \int \left (\frac {8 x^2}{x^3-5 \log (x)}+\frac {x^3}{x^3-5 \log (x)}+\frac {3 x^2 \log \left (-\frac {e^x}{4 x}\right )}{x^3-5 \log (x)}\right ) \, dx\\ &=\frac {x}{5}-\frac {\log (x)}{5}-\frac {1}{5} \int \frac {x^3}{x^3-5 \log (x)} \, dx+\frac {3}{5} \int \frac {x^5 \left (3+\log \left (-\frac {e^x}{4 x}\right )\right )}{\left (x^3-5 \log (x)\right )^2} \, dx-\frac {3}{5} \int \frac {x^2 \log \left (-\frac {e^x}{4 x}\right )}{x^3-5 \log (x)} \, dx-\frac {8}{5} \int \frac {x^2}{x^3-5 \log (x)} \, dx-\int \frac {x^2 \left (3+\log \left (-\frac {e^x}{4 x}\right )\right )}{\left (x^3-5 \log (x)\right )^2} \, dx\\ &=\frac {x}{5}-\frac {\log (x)}{5}-\frac {1}{5} \int \frac {x^3}{x^3-5 \log (x)} \, dx+\frac {3}{5} \int \left (\frac {3 x^5}{\left (x^3-5 \log (x)\right )^2}+\frac {x^5 \log \left (-\frac {e^x}{4 x}\right )}{\left (x^3-5 \log (x)\right )^2}\right ) \, dx-\frac {3}{5} \int \frac {x^2 \log \left (-\frac {e^x}{4 x}\right )}{x^3-5 \log (x)} \, dx-\frac {8}{5} \int \frac {x^2}{x^3-5 \log (x)} \, dx-\int \left (\frac {3 x^2}{\left (x^3-5 \log (x)\right )^2}+\frac {x^2 \log \left (-\frac {e^x}{4 x}\right )}{\left (x^3-5 \log (x)\right )^2}\right ) \, dx\\ &=\frac {x}{5}-\frac {\log (x)}{5}-\frac {1}{5} \int \frac {x^3}{x^3-5 \log (x)} \, dx+\frac {3}{5} \int \frac {x^5 \log \left (-\frac {e^x}{4 x}\right )}{\left (x^3-5 \log (x)\right )^2} \, dx-\frac {3}{5} \int \frac {x^2 \log \left (-\frac {e^x}{4 x}\right )}{x^3-5 \log (x)} \, dx-\frac {8}{5} \int \frac {x^2}{x^3-5 \log (x)} \, dx+\frac {9}{5} \int \frac {x^5}{\left (x^3-5 \log (x)\right )^2} \, dx-3 \int \frac {x^2}{\left (x^3-5 \log (x)\right )^2} \, dx-\int \frac {x^2 \log \left (-\frac {e^x}{4 x}\right )}{\left (x^3-5 \log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.28, size = 54, normalized size = 2.00 \begin {gather*} \frac {(-3+x) x^3-x^3 \log \left (-\frac {e^x}{4 x}\right )-x \left (5+x^2\right ) \log (x)+5 \log ^2(x)}{5 \left (x^3-5 \log (x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 36, normalized size = 1.33 \begin {gather*} \frac {2 \, x^{3} \log \relax (2) - 3 \, x^{3} - 5 \, x \log \relax (x) + 5 \, \log \relax (x)^{2}}{5 \, {\left (x^{3} - 5 \, \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [C] time = 0.21, size = 52, normalized size = 1.93 \begin {gather*} -\frac {1}{25} \, x^{3} + \frac {1}{5} \, x + \frac {x^{6} - 5 i \, \pi x^{3} - 5 \, x^{4} + 10 \, x^{3} \log \relax (2) - 15 \, x^{3}}{25 \, {\left (x^{3} - 5 \, \log \relax (x)\right )}} - \frac {1}{5} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 42, normalized size = 1.56
method | result | size |
default | \(\frac {\ln \relax (x )^{2}+\left (-\ln \left (-\frac {{\mathrm e}^{x}}{4 x}\right )+x -\ln \relax (x )-3\right ) \ln \relax (x )-x \ln \relax (x )}{x^{3}-5 \ln \relax (x )}\) | \(42\) |
risch | \(-\frac {x^{3} \ln \left ({\mathrm e}^{x}\right )}{5 \left (x^{3}-5 \ln \relax (x )\right )}+\frac {-i \pi \,x^{3} \mathrm {csgn}\left (\frac {i {\mathrm e}^{x}}{x}\right )^{2} \mathrm {csgn}\left (\frac {i}{x}\right )-i \pi \,x^{3} \mathrm {csgn}\left (\frac {i {\mathrm e}^{x}}{x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{x}\right )+2 i \pi \,x^{3} \mathrm {csgn}\left (\frac {i {\mathrm e}^{x}}{x}\right )^{2}+i \pi \,x^{3} \mathrm {csgn}\left (\frac {i {\mathrm e}^{x}}{x}\right ) \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right )-i \pi \,x^{3} \mathrm {csgn}\left (\frac {i {\mathrm e}^{x}}{x}\right )^{3}-2 i \pi \,x^{3}+4 x^{3} \ln \relax (2)+2 x^{4}-6 x^{3}+10 \ln \relax (x )^{2}-10 x \ln \relax (x )}{10 x^{3}-50 \ln \relax (x )}\) | \(182\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 47, normalized size = 1.74 \begin {gather*} \frac {x^{4} + x^{3} {\left (2 \, \log \relax (2) - 3\right )} - x^{3} \log \left (-e^{x}\right ) - 5 \, x \log \relax (x) + 5 \, \log \relax (x)^{2}}{5 \, {\left (x^{3} - 5 \, \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.27, size = 151, normalized size = 5.59 \begin {gather*} \frac {x^3}{25}-\frac {\ln \relax (x)}{5}-\frac {\frac {x\,\left (25\,x^2\,\left (\ln \left (-\frac {1}{4\,x}\right )+\ln \relax (x)\right )+75\,x^2+25\,x^3-5\,x^5+5\,x^6-3\,x^8\right )}{25\,\left (3\,x^3-5\right )}-\frac {x\,\ln \relax (x)\,\left (15\,x^2\,\left (\ln \left (-\frac {1}{4\,x}\right )+\ln \relax (x)\right )+45\,x^2+20\,x^3-6\,x^5\right )}{5\,\left (3\,x^3-5\right )}}{5\,\ln \relax (x)-x^3}-\frac {20\,x+15\,\ln \left (-\frac {1}{4\,x}\right )+15\,\ln \relax (x)+35}{45\,x^3-75}-\frac {x}{15} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [C] time = 0.47, size = 53, normalized size = 1.96 \begin {gather*} - \frac {x^{3}}{25} + \frac {x}{5} - \frac {\log {\relax (x )}}{5} + \frac {- x^{6} + 5 x^{4} - 10 x^{3} \log {\relax (2 )} + 15 x^{3} + 5 i \pi x^{3}}{- 25 x^{3} + 125 \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________