Optimal. Leaf size=23 \[ \frac {1}{x}+x \left (\frac {1}{9} e^{2 x^2 (1+x)}+\log (x)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 45, normalized size of antiderivative = 1.96, number of steps used = 9, number of rules used = 4, integrand size = 49, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.082, Rules used = {12, 14, 2288, 2295} \begin {gather*} \frac {e^{2 x^2 (x+1)} \left (3 x^3+2 x^2\right )}{9 \left (x^2+2 (x+1) x\right )}+\frac {1}{x}+x \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2288
Rule 2295
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{9} \int \frac {-9+9 x^2+e^{2 x^2+2 x^3} \left (x^2+4 x^4+6 x^5\right )+9 x^2 \log (x)}{x^2} \, dx\\ &=\frac {1}{9} \int \left (e^{2 x^2 (1+x)} \left (1+4 x^2+6 x^3\right )+\frac {9 \left (-1+x^2+x^2 \log (x)\right )}{x^2}\right ) \, dx\\ &=\frac {1}{9} \int e^{2 x^2 (1+x)} \left (1+4 x^2+6 x^3\right ) \, dx+\int \frac {-1+x^2+x^2 \log (x)}{x^2} \, dx\\ &=\frac {e^{2 x^2 (1+x)} \left (2 x^2+3 x^3\right )}{9 \left (x^2+2 x (1+x)\right )}+\int \left (\frac {-1+x^2}{x^2}+\log (x)\right ) \, dx\\ &=\frac {e^{2 x^2 (1+x)} \left (2 x^2+3 x^3\right )}{9 \left (x^2+2 x (1+x)\right )}+\int \frac {-1+x^2}{x^2} \, dx+\int \log (x) \, dx\\ &=-x+\frac {e^{2 x^2 (1+x)} \left (2 x^2+3 x^3\right )}{9 \left (x^2+2 x (1+x)\right )}+x \log (x)+\int \left (1-\frac {1}{x^2}\right ) \, dx\\ &=\frac {1}{x}+\frac {e^{2 x^2 (1+x)} \left (2 x^2+3 x^3\right )}{9 \left (x^2+2 x (1+x)\right )}+x \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 23, normalized size = 1.00 \begin {gather*} \frac {1}{x}+\frac {1}{9} e^{2 x^2 (1+x)} x+x \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.45, size = 30, normalized size = 1.30 \begin {gather*} \frac {x^{2} e^{\left (2 \, x^{3} + 2 \, x^{2}\right )} + 9 \, x^{2} \log \relax (x) + 9}{9 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 30, normalized size = 1.30 \begin {gather*} \frac {x^{2} e^{\left (2 \, x^{3} + 2 \, x^{2}\right )} + 9 \, x^{2} \log \relax (x) + 9}{9 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 24, normalized size = 1.04
method | result | size |
default | \(\frac {x \,{\mathrm e}^{2 x^{3}+2 x^{2}}}{9}+\frac {1}{x}+x \ln \relax (x )\) | \(24\) |
risch | \(x \ln \relax (x )+\frac {{\mathrm e}^{2 \left (x +1\right ) x^{2}} x^{2}+9}{9 x}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 23, normalized size = 1.00 \begin {gather*} \frac {1}{9} \, x e^{\left (2 \, x^{3} + 2 \, x^{2}\right )} + x \log \relax (x) + \frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.33, size = 26, normalized size = 1.13 \begin {gather*} x+\frac {x\,{\mathrm {e}}^{2\,x^3+2\,x^2}}{9}+x\,\left (\ln \relax (x)-1\right )+\frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 22, normalized size = 0.96 \begin {gather*} \frac {x e^{2 x^{3} + 2 x^{2}}}{9} + x \log {\relax (x )} + \frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________