Optimal. Leaf size=25 \[ \frac {\log \left (\frac {1}{2} \left (1+e^5\right ) x \left (2-\frac {5}{\log (2)}\right )\right )}{(4+x)^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.22, antiderivative size = 25, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 4, integrand size = 58, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.069, Rules used = {6688, 6742, 44, 2319} \begin {gather*} \frac {\log \left (-\frac {\left (1+e^5\right ) x (5-\log (4))}{\log (4)}\right )}{(x+4)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 44
Rule 2319
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4+x-2 x \log \left (\frac {\left (1+e^5\right ) x (-5+\log (4))}{\log (4)}\right )}{x (4+x)^3} \, dx\\ &=\int \left (\frac {1}{x (4+x)^2}-\frac {2 \log \left (\frac {\left (1+e^5\right ) x (-5+\log (4))}{\log (4)}\right )}{(4+x)^3}\right ) \, dx\\ &=-\left (2 \int \frac {\log \left (\frac {\left (1+e^5\right ) x (-5+\log (4))}{\log (4)}\right )}{(4+x)^3} \, dx\right )+\int \frac {1}{x (4+x)^2} \, dx\\ &=\frac {\log \left (-\frac {\left (1+e^5\right ) x (5-\log (4))}{\log (4)}\right )}{(4+x)^2}-\int \frac {1}{x (4+x)^2} \, dx+\int \left (\frac {1}{16 x}-\frac {1}{4 (4+x)^2}-\frac {1}{16 (4+x)}\right ) \, dx\\ &=\frac {1}{4 (4+x)}+\frac {\log (x)}{16}-\frac {1}{16} \log (4+x)+\frac {\log \left (-\frac {\left (1+e^5\right ) x (5-\log (4))}{\log (4)}\right )}{(4+x)^2}-\int \left (\frac {1}{16 x}-\frac {1}{4 (4+x)^2}-\frac {1}{16 (4+x)}\right ) \, dx\\ &=\frac {\log \left (-\frac {\left (1+e^5\right ) x (5-\log (4))}{\log (4)}\right )}{(4+x)^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 22, normalized size = 0.88 \begin {gather*} \frac {\log \left (\frac {\left (1+e^5\right ) x (-5+\log (4))}{\log (4)}\right )}{(4+x)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 37, normalized size = 1.48 \begin {gather*} \frac {\log \left (-\frac {5 \, x e^{5} - 2 \, {\left (x e^{5} + x\right )} \log \relax (2) + 5 \, x}{2 \, \log \relax (2)}\right )}{x^{2} + 8 \, x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 42, normalized size = 1.68 \begin {gather*} -\frac {\log \relax (2) - \log \left (2 \, x e^{5} \log \relax (2) - 5 \, x e^{5} + 2 \, x \log \relax (2) - 5 \, x\right ) + \log \left (\log \relax (2)\right )}{x^{2} + 8 \, x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.62, size = 35, normalized size = 1.40
method | result | size |
norman | \(\frac {\ln \left (\frac {\left (2 x \,{\mathrm e}^{5}+2 x \right ) \ln \relax (2)-5 x \,{\mathrm e}^{5}-5 x}{2 \ln \relax (2)}\right )}{\left (4+x \right )^{2}}\) | \(35\) |
risch | \(\frac {\ln \left (\frac {\left (2 x \,{\mathrm e}^{5}+2 x \right ) \ln \relax (2)-5 x \,{\mathrm e}^{5}-5 x}{2 \ln \relax (2)}\right )}{x^{2}+8 x +16}\) | \(40\) |
derivativedivides | \(\text {Expression too large to display}\) | \(150067\) |
default | \(\text {Expression too large to display}\) | \(150067\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.37, size = 176, normalized size = 7.04 \begin {gather*} -\frac {1}{16} \, {\left (\frac {\log \relax (2) \log \left (x + 4\right )}{2 \, {\left (e^{5} + 1\right )} \log \relax (2) - 5 \, e^{5} - 5} - \frac {\log \relax (2) \log \relax (x)}{2 \, {\left (e^{5} + 1\right )} \log \relax (2) - 5 \, e^{5} - 5} - \frac {4 \, \log \relax (2)}{{\left (2 \, {\left (e^{5} + 1\right )} \log \relax (2) - 5 \, e^{5} - 5\right )} x + 8 \, {\left (e^{5} + 1\right )} \log \relax (2) - 20 \, e^{5} - 20}\right )} {\left (\frac {5 \, e^{5}}{\log \relax (2)} + \frac {5}{\log \relax (2)} - 2 \, e^{5} - 2\right )} + \frac {x + 6}{4 \, {\left (x^{2} + 8 \, x + 16\right )}} + \frac {\log \left (x e^{5} + x - \frac {5 \, x e^{5}}{2 \, \log \relax (2)} - \frac {5 \, x}{2 \, \log \relax (2)}\right )}{x^{2} + 8 \, x + 16} - \frac {1}{2 \, {\left (x^{2} + 8 \, x + 16\right )}} - \frac {1}{16} \, \log \left (x + 4\right ) + \frac {1}{16} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.31, size = 49, normalized size = 1.96 \begin {gather*} \frac {x^2\,\left (\ln \left (\frac {\ln \relax (2)\,\left (2\,x+2\,x\,{\mathrm {e}}^5\right )}{2}-\frac {5\,x\,{\mathrm {e}}^5}{2}-\frac {5\,x}{2}\right )-\ln \left (\ln \relax (2)\right )\right )}{x^4+8\,x^3+16\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 41, normalized size = 1.64 \begin {gather*} \frac {\log {\left (\frac {- \frac {5 x e^{5}}{2} - \frac {5 x}{2} + \frac {\left (2 x + 2 x e^{5}\right ) \log {\relax (2 )}}{2}}{\log {\relax (2 )}} \right )}}{x^{2} + 8 x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________