Optimal. Leaf size=20 \[ \frac {1}{2} \left (5-e^7-x-3 e^x x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 23, normalized size of antiderivative = 1.15, number of steps used = 4, number of rules used = 3, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {12, 2176, 2194} \begin {gather*} -\frac {x}{2}+\frac {3 e^x}{2}-\frac {3}{2} e^x (x+1) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \left (-1+e^x (-3-3 x)\right ) \, dx\\ &=-\frac {x}{2}+\frac {1}{2} \int e^x (-3-3 x) \, dx\\ &=-\frac {x}{2}-\frac {3}{2} e^x (1+x)+\frac {3 \int e^x \, dx}{2}\\ &=\frac {3 e^x}{2}-\frac {x}{2}-\frac {3}{2} e^x (1+x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 14, normalized size = 0.70 \begin {gather*} \frac {1}{2} \left (-x-3 e^x x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 9, normalized size = 0.45 \begin {gather*} -\frac {3}{2} \, x e^{x} - \frac {1}{2} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 9, normalized size = 0.45 \begin {gather*} -\frac {3}{2} \, x e^{x} - \frac {1}{2} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.01, size = 10, normalized size = 0.50
method | result | size |
default | \(-\frac {x}{2}-\frac {3 \,{\mathrm e}^{x} x}{2}\) | \(10\) |
norman | \(-\frac {x}{2}-\frac {3 \,{\mathrm e}^{x} x}{2}\) | \(10\) |
risch | \(-\frac {x}{2}-\frac {3 \,{\mathrm e}^{x} x}{2}\) | \(10\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 15, normalized size = 0.75 \begin {gather*} -\frac {3}{2} \, {\left (x - 1\right )} e^{x} - \frac {1}{2} \, x - \frac {3}{2} \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.05, size = 9, normalized size = 0.45 \begin {gather*} -\frac {x\,\left (3\,{\mathrm {e}}^x+1\right )}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 12, normalized size = 0.60 \begin {gather*} - \frac {3 x e^{x}}{2} - \frac {x}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________