Optimal. Leaf size=23 \[ \frac {x}{4+2 x-\frac {1}{\log \left (-130 e^{-4-x}\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 1.31, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x-\log \left (-130 e^{-4-x}\right )+4 \log ^2\left (-130 e^{-4-x}\right )}{1+(-8-4 x) \log \left (-130 e^{-4-x}\right )+\left (16+16 x+4 x^2\right ) \log ^2\left (-130 e^{-4-x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x-\log \left (-130 e^{-4-x}\right )+4 \log ^2\left (-130 e^{-4-x}\right )}{\left (1-2 (2+x) \log \left (-130 e^{-4-x}\right )\right )^2} \, dx\\ &=\int \left (\frac {1}{(2+x)^2}+\frac {x \left (7+8 x+2 x^2\right )}{2 (2+x)^2 \left (-1+4 \log \left (-130 e^{-4-x}\right )+2 x \log \left (-130 e^{-4-x}\right )\right )^2}+\frac {2-x}{2 (2+x)^2 \left (-1+4 \log \left (-130 e^{-4-x}\right )+2 x \log \left (-130 e^{-4-x}\right )\right )}\right ) \, dx\\ &=-\frac {1}{2+x}+\frac {1}{2} \int \frac {x \left (7+8 x+2 x^2\right )}{(2+x)^2 \left (-1+4 \log \left (-130 e^{-4-x}\right )+2 x \log \left (-130 e^{-4-x}\right )\right )^2} \, dx+\frac {1}{2} \int \frac {2-x}{(2+x)^2 \left (-1+4 \log \left (-130 e^{-4-x}\right )+2 x \log \left (-130 e^{-4-x}\right )\right )} \, dx\\ &=-\frac {1}{2+x}+\frac {1}{2} \int \frac {x \left (7+8 x+2 x^2\right )}{(2+x)^2 \left (1-2 (2+x) \log \left (-130 e^{-4-x}\right )\right )^2} \, dx+\frac {1}{2} \int \frac {-2+x}{(2+x)^2 \left (1-2 (2+x) \log \left (-130 e^{-4-x}\right )\right )} \, dx\\ &=-\frac {1}{2+x}+\frac {1}{2} \int \left (\frac {2 x}{\left (-1+4 \log \left (-130 e^{-4-x}\right )+2 x \log \left (-130 e^{-4-x}\right )\right )^2}+\frac {2}{(2+x)^2 \left (-1+4 \log \left (-130 e^{-4-x}\right )+2 x \log \left (-130 e^{-4-x}\right )\right )^2}-\frac {1}{(2+x) \left (-1+4 \log \left (-130 e^{-4-x}\right )+2 x \log \left (-130 e^{-4-x}\right )\right )^2}\right ) \, dx+\frac {1}{2} \int \left (\frac {4}{(2+x)^2 \left (-1+4 \log \left (-130 e^{-4-x}\right )+2 x \log \left (-130 e^{-4-x}\right )\right )}-\frac {1}{(2+x) \left (-1+4 \log \left (-130 e^{-4-x}\right )+2 x \log \left (-130 e^{-4-x}\right )\right )}\right ) \, dx\\ &=-\frac {1}{2+x}-\frac {1}{2} \int \frac {1}{(2+x) \left (-1+4 \log \left (-130 e^{-4-x}\right )+2 x \log \left (-130 e^{-4-x}\right )\right )^2} \, dx-\frac {1}{2} \int \frac {1}{(2+x) \left (-1+4 \log \left (-130 e^{-4-x}\right )+2 x \log \left (-130 e^{-4-x}\right )\right )} \, dx+2 \int \frac {1}{(2+x)^2 \left (-1+4 \log \left (-130 e^{-4-x}\right )+2 x \log \left (-130 e^{-4-x}\right )\right )} \, dx+\int \frac {x}{\left (-1+4 \log \left (-130 e^{-4-x}\right )+2 x \log \left (-130 e^{-4-x}\right )\right )^2} \, dx+\int \frac {1}{(2+x)^2 \left (-1+4 \log \left (-130 e^{-4-x}\right )+2 x \log \left (-130 e^{-4-x}\right )\right )^2} \, dx\\ &=-\frac {1}{2+x}-\frac {1}{2} \int \frac {1}{(2+x) \left (-1+4 \log \left (-130 e^{-4-x}\right )+2 x \log \left (-130 e^{-4-x}\right )\right )} \, dx-\frac {1}{2} \int \frac {1}{(2+x) \left (1-2 (2+x) \log \left (-130 e^{-4-x}\right )\right )^2} \, dx+2 \int \frac {1}{(2+x)^2 \left (-1+2 (2+x) \log \left (-130 e^{-4-x}\right )\right )} \, dx+\int \frac {x}{\left (1-2 (2+x) \log \left (-130 e^{-4-x}\right )\right )^2} \, dx+\int \frac {1}{(2+x)^2 \left (1-2 (2+x) \log \left (-130 e^{-4-x}\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.37, size = 34, normalized size = 1.48 \begin {gather*} \frac {1-4 \log \left (-130 e^{-4-x}\right )}{-2+4 (2+x) \log \left (-130 e^{-4-x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [C] time = 0.70, size = 37, normalized size = 1.61 \begin {gather*} \frac {-4 i \, \pi + 4 \, x - 4 \, \log \left (130\right ) + 17}{2 \, {\left (2 \, {\left (i \, \pi + \log \left (130\right )\right )} {\left (x + 2\right )} - 2 \, x^{2} - 12 \, x - 17\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [C] time = 0.23, size = 41, normalized size = 1.78 \begin {gather*} \frac {4 i \, \pi - 4 \, x + 4 \, \log \left (130\right ) - 17}{-8 i \, \pi - 4 i \, \pi x + 4 \, x^{2} - 4 \, x \log \left (130\right ) + 24 \, x - 8 \, \log \left (130\right ) + 34} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.51, size = 42, normalized size = 1.83
method | result | size |
norman | \(\frac {\frac {1}{2}-2 \ln \left (-130 \,{\mathrm e}^{-x -4}\right )}{2 \ln \left (-130 \,{\mathrm e}^{-x -4}\right ) x +4 \ln \left (-130 \,{\mathrm e}^{-x -4}\right )-1}\) | \(42\) |
default | \(\frac {-\frac {1}{4}+\ln \left (-130 \,{\mathrm e}^{-x -4}\right )}{x^{2}+x \left (\ln \left ({\mathrm e}^{4+x}\right )-4-x \right )-x \left (\ln \left (-130 \,{\mathrm e}^{-x -4}\right )+\ln \left ({\mathrm e}^{4+x}\right )\right )+4 x +\frac {1}{2}-2 \ln \left (-130 \,{\mathrm e}^{-x -4}\right )}\) | \(64\) |
risch | \(-\frac {1}{2+x}-\frac {i x}{2 \left (2+x \right ) \left (-2 x \pi \mathrm {csgn}\left (i {\mathrm e}^{-x -4}\right )^{2}+2 x \pi \mathrm {csgn}\left (i {\mathrm e}^{-x -4}\right )^{3}-4 \pi \mathrm {csgn}\left (i {\mathrm e}^{-x -4}\right )^{2}+4 \pi \mathrm {csgn}\left (i {\mathrm e}^{-x -4}\right )^{3}+2 \pi x +4 \pi +4 i \ln \left ({\mathrm e}^{4+x}\right )-4 i \ln \left (13\right )-4 i \ln \relax (2)-4 i \ln \relax (5)-2 i x \ln \left (13\right )-2 i \ln \relax (5) x -2 i x \ln \relax (2)+2 i x \ln \left ({\mathrm e}^{4+x}\right )+i\right )}\) | \(142\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.50, size = 60, normalized size = 2.61 \begin {gather*} -\frac {4 \, \log \left (13\right ) + 4 \, \log \relax (5) + 4 \, \log \relax (2) - 4 \, \log \left (-e^{x}\right ) - 17}{2 \, {\left (2 \, x {\left (\log \left (13\right ) + \log \relax (5) + \log \relax (2) - 4\right )} - 2 \, {\left (x + 2\right )} \log \left (-e^{x}\right ) + 4 \, \log \left (13\right ) + 4 \, \log \relax (5) + 4 \, \log \relax (2) - 17\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.92, size = 43, normalized size = 1.87 \begin {gather*} \frac {2\,x-2\,\ln \left (130\right )+\frac {17}{2}-\pi \,2{}\mathrm {i}}{-2\,x^2+\left (2\,\ln \left (130\right )-12+\pi \,2{}\mathrm {i}\right )\,x+\pi \,4{}\mathrm {i}+4\,\ln \left (130\right )-17} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [C] time = 1.81, size = 44, normalized size = 1.91 \begin {gather*} \frac {4 x - 4 \log {\left (130 \right )} + 17 - 4 i \pi }{- 4 x^{2} + x \left (-24 + 4 \log {\left (130 \right )} + 4 i \pi \right ) - 34 + 8 \log {\left (130 \right )} + 8 i \pi } \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________