Optimal. Leaf size=26 \[ x^2+\frac {5 \log \left (\frac {\sqrt {e}}{x}+x+4 x^2\right )}{e^3} \]
________________________________________________________________________________________
Rubi [A] time = 0.31, antiderivative size = 31, normalized size of antiderivative = 1.19, number of steps used = 5, number of rules used = 4, integrand size = 65, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.062, Rules used = {12, 1594, 6742, 1587} \begin {gather*} x^2+\frac {5 \log \left (4 x^3+x^2+\sqrt {e}\right )}{e^3}-\frac {5 \log (x)}{e^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1587
Rule 1594
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-5 \sqrt {e}+5 x^2+40 x^3+e^3 \left (2 \sqrt {e} x^2+2 x^4+8 x^5\right )}{\sqrt {e} x+x^3+4 x^4} \, dx}{e^3}\\ &=\frac {\int \frac {-5 \sqrt {e}+5 x^2+40 x^3+e^3 \left (2 \sqrt {e} x^2+2 x^4+8 x^5\right )}{x \left (\sqrt {e}+x^2+4 x^3\right )} \, dx}{e^3}\\ &=\frac {\int \left (-\frac {5}{x}+2 e^3 x+\frac {10 x (1+6 x)}{\sqrt {e}+x^2+4 x^3}\right ) \, dx}{e^3}\\ &=x^2-\frac {5 \log (x)}{e^3}+\frac {10 \int \frac {x (1+6 x)}{\sqrt {e}+x^2+4 x^3} \, dx}{e^3}\\ &=x^2-\frac {5 \log (x)}{e^3}+\frac {5 \log \left (\sqrt {e}+x^2+4 x^3\right )}{e^3}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 33, normalized size = 1.27 \begin {gather*} \frac {e^3 x^2-5 \log (x)+5 \log \left (\sqrt {e}+x^2+4 x^3\right )}{e^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 28, normalized size = 1.08 \begin {gather*} {\left (x^{2} e^{3} + 5 \, \log \left (4 \, x^{3} + x^{2} + e^{\frac {1}{2}}\right ) - 5 \, \log \relax (x)\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 30, normalized size = 1.15 \begin {gather*} {\left (x^{2} e^{3} + 5 \, \log \left ({\left | 4 \, x^{3} + x^{2} + e^{\frac {1}{2}} \right |}\right ) - 5 \, \log \left ({\left | x \right |}\right )\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 27, normalized size = 1.04
method | result | size |
risch | \(x^{2}-5 \,{\mathrm e}^{-3} \ln \relax (x )+5 \,{\mathrm e}^{-3} \ln \left (4 x^{3}+x^{2}+{\mathrm e}^{\frac {1}{2}}\right )\) | \(27\) |
default | \({\mathrm e}^{-3} \left (x^{2} {\mathrm e}^{3}-5 \ln \relax (x )+5 \ln \left (4 x^{3}+x^{2}+{\mathrm e}^{\frac {1}{2}}\right )\right )\) | \(31\) |
norman | \(x^{2}-5 \,{\mathrm e}^{-3} \ln \relax (x )+5 \,{\mathrm e}^{-3} \ln \left (4 x^{3}+x^{2}+{\mathrm e}^{\frac {1}{2}}\right )\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 28, normalized size = 1.08 \begin {gather*} {\left (x^{2} e^{3} + 5 \, \log \left (4 \, x^{3} + x^{2} + e^{\frac {1}{2}}\right ) - 5 \, \log \relax (x)\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.23, size = 28, normalized size = 1.08 \begin {gather*} 5\,{\mathrm {e}}^{-3}\,\ln \left (x^3+\frac {x^2}{4}+\frac {\sqrt {\mathrm {e}}}{4}\right )-5\,{\mathrm {e}}^{-3}\,\ln \relax (x)+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________