Optimal. Leaf size=30 \[ \frac {-x+25 e^{-\frac {2}{3} e^{2 (4+x+\log (3))}} \log ^2(x)}{\log (x)} \]
________________________________________________________________________________________
Rubi [A] time = 1.45, antiderivative size = 23, normalized size of antiderivative = 0.77, number of steps used = 10, number of rules used = 8, integrand size = 64, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {12, 6742, 2282, 2194, 2554, 6688, 2297, 2298} \begin {gather*} 25 e^{-6 e^{2 x+8}} \log (x)-\frac {x}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rule 2282
Rule 2297
Rule 2298
Rule 2554
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {e^{-6 e^{8+2 x}} \left (75 \log ^2(x)-900 e^{8+2 x} x \log ^3(x)+e^{6 e^{8+2 x}} (3 x-3 x \log (x))\right )}{x \log ^2(x)} \, dx\\ &=\frac {1}{3} \int \left (-900 e^{8-6 e^{8+2 x}+2 x} \log (x)-\frac {3 e^{-6 e^{8+2 x}} \left (-e^{6 e^{8+2 x}} x+e^{6 e^{8+2 x}} x \log (x)-25 \log ^2(x)\right )}{x \log ^2(x)}\right ) \, dx\\ &=-\left (300 \int e^{8-6 e^{8+2 x}+2 x} \log (x) \, dx\right )-\int \frac {e^{-6 e^{8+2 x}} \left (-e^{6 e^{8+2 x}} x+e^{6 e^{8+2 x}} x \log (x)-25 \log ^2(x)\right )}{x \log ^2(x)} \, dx\\ &=25 e^{-6 e^{8+2 x}} \log (x)+300 \int -\frac {e^{-6 e^{8+2 x}}}{12 x} \, dx-\int \left (-\frac {25 e^{-6 e^{8+2 x}}}{x}-\frac {1}{\log ^2(x)}+\frac {1}{\log (x)}\right ) \, dx\\ &=25 e^{-6 e^{8+2 x}} \log (x)+\int \frac {1}{\log ^2(x)} \, dx-\int \frac {1}{\log (x)} \, dx\\ &=-\frac {x}{\log (x)}+25 e^{-6 e^{8+2 x}} \log (x)-\text {li}(x)+\int \frac {1}{\log (x)} \, dx\\ &=-\frac {x}{\log (x)}+25 e^{-6 e^{8+2 x}} \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.46, size = 23, normalized size = 0.77 \begin {gather*} -\frac {x}{\log (x)}+25 e^{-6 e^{8+2 x}} \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 41, normalized size = 1.37 \begin {gather*} -\frac {{\left (x e^{\left (\frac {2}{3} \, e^{\left (2 \, x + 2 \, \log \relax (3) + 8\right )}\right )} - 25 \, \log \relax (x)^{2}\right )} e^{\left (-\frac {2}{3} \, e^{\left (2 \, x + 2 \, \log \relax (3) + 8\right )}\right )}}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 41, normalized size = 1.37 \begin {gather*} \frac {{\left (25 \, e^{\left (2 \, x - 6 \, e^{\left (2 \, x + 8\right )} + 8\right )} \log \relax (x)^{2} - x e^{\left (2 \, x + 8\right )}\right )} e^{\left (-2 \, x - 8\right )}}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 22, normalized size = 0.73
method | result | size |
risch | \(-\frac {x}{\ln \relax (x )}+25 \ln \relax (x ) {\mathrm e}^{-6 \,{\mathrm e}^{2 x +8}}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 24, normalized size = 0.80 \begin {gather*} \frac {25 \, e^{\left (-6 \, e^{\left (2 \, x + 8\right )}\right )} \log \relax (x)^{2} - x}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.49, size = 21, normalized size = 0.70 \begin {gather*} 25\,{\mathrm {e}}^{-6\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^8}\,\ln \relax (x)-\frac {x}{\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 29.52, size = 19, normalized size = 0.63 \begin {gather*} - \frac {x}{\log {\relax (x )}} + 25 e^{- 6 e^{2 x + 8}} \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________