Optimal. Leaf size=17 \[ \log \left (3-e^3+\frac {x}{2}+\log (2+x)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.14, antiderivative size = 20, normalized size of antiderivative = 1.18, number of steps used = 2, number of rules used = 2, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.061, Rules used = {6741, 6684} \begin {gather*} \log \left (-x-2 \log (x+2)-2 \left (3-e^3\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4+x}{(2+x) \left (6 \left (1-\frac {e^3}{3}\right )+x+2 \log (2+x)\right )} \, dx\\ &=\log \left (-2 \left (3-e^3\right )-x-2 \log (2+x)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.34, size = 15, normalized size = 0.88 \begin {gather*} \log \left (6-2 e^3+x+2 \log (2+x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 14, normalized size = 0.82 \begin {gather*} \log \left (x - 2 \, e^{3} + 2 \, \log \left (x + 2\right ) + 6\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 14, normalized size = 0.82 \begin {gather*} \log \left (x - 2 \, e^{3} + 2 \, \log \left (x + 2\right ) + 6\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 15, normalized size = 0.88
method | result | size |
risch | \(\ln \left (\ln \left (2+x \right )+\frac {x}{2}-{\mathrm e}^{3}+3\right )\) | \(15\) |
norman | \(\ln \left (-x +2 \,{\mathrm e}^{3}-2 \ln \left (2+x \right )-6\right )\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 14, normalized size = 0.82 \begin {gather*} \log \left (\frac {1}{2} \, x - e^{3} + \log \left (x + 2\right ) + 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.03, size = 14, normalized size = 0.82 \begin {gather*} \ln \left (x+2\,\ln \left (x+2\right )-2\,{\mathrm {e}}^3+6\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 14, normalized size = 0.82 \begin {gather*} \log {\left (\frac {x}{2} + \log {\left (x + 2 \right )} - e^{3} + 3 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________