Optimal. Leaf size=32 \[ x \left (x+\left (-3-x+\log \left (4 e^{-2-x+\frac {-\frac {1}{e^2}+x}{x}}\right )\right )^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.32, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-6-2 x+e^2 \left (9 x+20 x^2+5 x^3\right )+\left (2+e^2 \left (-6 x-6 x^2\right )\right ) \log \left (4 e^{\frac {-1+e^2 \left (-x-x^2\right )}{e^2 x}}\right )+e^2 x \log ^2\left (4 e^{\frac {-1+e^2 \left (-x-x^2\right )}{e^2 x}}\right )}{e^2 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-6-2 x+e^2 \left (9 x+20 x^2+5 x^3\right )+\left (2+e^2 \left (-6 x-6 x^2\right )\right ) \log \left (4 e^{\frac {-1+e^2 \left (-x-x^2\right )}{e^2 x}}\right )+e^2 x \log ^2\left (4 e^{\frac {-1+e^2 \left (-x-x^2\right )}{e^2 x}}\right )}{x} \, dx}{e^2}\\ &=\frac {\int \left (\frac {-6-\left (2-9 e^2\right ) x+20 e^2 x^2+5 e^2 x^3}{x}-\frac {2 \left (-1+3 e^2 x+3 e^2 x^2\right ) \log \left (4 e^{-1-\frac {1}{e^2 x}-x}\right )}{x}+e^2 \log ^2\left (4 e^{-1-\frac {1}{e^2 x}-x}\right )\right ) \, dx}{e^2}\\ &=\frac {\int \frac {-6-\left (2-9 e^2\right ) x+20 e^2 x^2+5 e^2 x^3}{x} \, dx}{e^2}-\frac {2 \int \frac {\left (-1+3 e^2 x+3 e^2 x^2\right ) \log \left (4 e^{-1-\frac {1}{e^2 x}-x}\right )}{x} \, dx}{e^2}+\int \log ^2\left (4 e^{-1-\frac {1}{e^2 x}-x}\right ) \, dx\\ &=\frac {\int \left (-2+9 e^2-\frac {6}{x}+20 e^2 x+5 e^2 x^2\right ) \, dx}{e^2}-\frac {2 \int \left (3 e^2 \log \left (4 e^{-1-\frac {1}{e^2 x}-x}\right )-\frac {\log \left (4 e^{-1-\frac {1}{e^2 x}-x}\right )}{x}+3 e^2 x \log \left (4 e^{-1-\frac {1}{e^2 x}-x}\right )\right ) \, dx}{e^2}+\int \log ^2\left (4 e^{-1-\frac {1}{e^2 x}-x}\right ) \, dx\\ &=-\frac {\left (2-9 e^2\right ) x}{e^2}+10 x^2+\frac {5 x^3}{3}-\frac {6 \log (x)}{e^2}-6 \int \log \left (4 e^{-1-\frac {1}{e^2 x}-x}\right ) \, dx-6 \int x \log \left (4 e^{-1-\frac {1}{e^2 x}-x}\right ) \, dx+\frac {2 \int \frac {\log \left (4 e^{-1-\frac {1}{e^2 x}-x}\right )}{x} \, dx}{e^2}+\int \log ^2\left (4 e^{-1-\frac {1}{e^2 x}-x}\right ) \, dx\\ &=-\frac {\left (2-9 e^2\right ) x}{e^2}+10 x^2+\frac {5 x^3}{3}-6 x \log \left (4 e^{-1-\frac {1}{e^2 x}-x}\right )-3 x^2 \log \left (4 e^{-1-\frac {1}{e^2 x}-x}\right )-\frac {6 \log (x)}{e^2}+\frac {2 \log \left (4 e^{-1-\frac {1}{e^2 x}-x}\right ) \log (x)}{e^2}+3 \int \left (\frac {1}{e^2}-x^2\right ) \, dx+6 \int \left (-1+\frac {1}{e^2 x^2}\right ) x \, dx-\frac {2 \int \left (-1+\frac {1}{e^2 x^2}\right ) \log (x) \, dx}{e^2}+\int \log ^2\left (4 e^{-1-\frac {1}{e^2 x}-x}\right ) \, dx\\ &=\frac {3 x}{e^2}-\frac {\left (2-9 e^2\right ) x}{e^2}+10 x^2+\frac {2 x^3}{3}-6 x \log \left (4 e^{-1-\frac {1}{e^2 x}-x}\right )-3 x^2 \log \left (4 e^{-1-\frac {1}{e^2 x}-x}\right )-\frac {6 \log (x)}{e^2}+\frac {2 \left (\frac {1}{e^2 x}+x\right ) \log (x)}{e^2}+\frac {2 \log \left (4 e^{-1-\frac {1}{e^2 x}-x}\right ) \log (x)}{e^2}+6 \int \left (\frac {1}{e^2 x}-x\right ) \, dx+\frac {2 \int \left (-1-\frac {1}{e^2 x^2}\right ) \, dx}{e^2}+\int \log ^2\left (4 e^{-1-\frac {1}{e^2 x}-x}\right ) \, dx\\ &=\frac {2}{e^4 x}+\frac {x}{e^2}-\frac {\left (2-9 e^2\right ) x}{e^2}+7 x^2+\frac {2 x^3}{3}-6 x \log \left (4 e^{-1-\frac {1}{e^2 x}-x}\right )-3 x^2 \log \left (4 e^{-1-\frac {1}{e^2 x}-x}\right )+\frac {2 \left (\frac {1}{e^2 x}+x\right ) \log (x)}{e^2}+\frac {2 \log \left (4 e^{-1-\frac {1}{e^2 x}-x}\right ) \log (x)}{e^2}+\int \log ^2\left (4 e^{-1-\frac {1}{e^2 x}-x}\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.17, size = 80, normalized size = 2.50 \begin {gather*} \frac {2 (-3+x)}{e^2}+\frac {2}{e^4 x}+x \left (9+7 x+x^2\right )+\left (\frac {2}{e^2}-2 x (3+x)\right ) \log \left (4 e^{-1-\frac {1}{e^2 x}-x}\right )+x \log ^2\left (4 e^{-1-\frac {1}{e^2 x}-x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 60, normalized size = 1.88 \begin {gather*} \frac {{\left (4 \, x^{2} e^{4} \log \relax (2)^{2} + 4 \, x^{2} e^{2} - 8 \, {\left (x^{3} + 2 \, x^{2}\right )} e^{4} \log \relax (2) + {\left (4 \, x^{4} + 17 \, x^{3} + 16 \, x^{2}\right )} e^{4} + 1\right )} e^{\left (-4\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.18, size = 63, normalized size = 1.97 \begin {gather*} {\left ({\left (4 \, x^{3} e^{8} - 8 \, x^{2} e^{8} \log \relax (2) + 4 \, x e^{8} \log \relax (2)^{2} + 17 \, x^{2} e^{8} - 16 \, x e^{8} \log \relax (2) + 16 \, x e^{8} + 4 \, x e^{6}\right )} e^{\left (-6\right )} + \frac {e^{\left (-2\right )}}{x}\right )} e^{\left (-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.14, size = 94, normalized size = 2.94
method | result | size |
risch | \(9 x +x^{3}+7 x^{2}+4 x \ln \relax (2)^{2}-12 x \ln \relax (2)-4 x^{2} \ln \relax (2)+x \ln \left ({\mathrm e}^{-\frac {\left (x^{2} {\mathrm e}^{2}+{\mathrm e}^{2} x +1\right ) {\mathrm e}^{-2}}{x}}\right )^{2}-\left (-4 x \ln \relax (2)+2 x^{2}+6 x \right ) \ln \left ({\mathrm e}^{-\frac {\left (x^{2} {\mathrm e}^{2}+{\mathrm e}^{2} x +1\right ) {\mathrm e}^{-2}}{x}}\right )\) | \(94\) |
default | \({\mathrm e}^{-2} \left (x^{3} {\mathrm e}^{2}+7 x^{2} {\mathrm e}^{2}+9 \,{\mathrm e}^{2} x +2 x -2 \,{\mathrm e}^{2} x^{2} \ln \left (4 \,{\mathrm e}^{\frac {\left (\left (-x^{2}-x \right ) {\mathrm e}^{2}-1\right ) {\mathrm e}^{-2}}{x}}\right )+x \,{\mathrm e}^{2} \ln \left (4 \,{\mathrm e}^{\frac {\left (\left (-x^{2}-x \right ) {\mathrm e}^{2}-1\right ) {\mathrm e}^{-2}}{x}}\right )^{2}+2 \ln \left (4 \,{\mathrm e}^{\frac {\left (\left (-x^{2}-x \right ) {\mathrm e}^{2}-1\right ) {\mathrm e}^{-2}}{x}}\right )-6 \ln \left (4 \,{\mathrm e}^{\frac {\left (\left (-x^{2}-x \right ) {\mathrm e}^{2}-1\right ) {\mathrm e}^{-2}}{x}}\right ) {\mathrm e}^{2} x +\frac {2 \,{\mathrm e}^{-2}}{x}\right )\) | \(161\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.36, size = 220, normalized size = 6.88 \begin {gather*} \frac {1}{3} \, {\left (2 \, x^{3} e^{2} - 9 \, x^{2} e^{2} \log \left (4 \, e^{\left (-x - \frac {e^{\left (-2\right )}}{x} - 1\right )}\right ) + 3 \, x e^{2} \log \left (4 \, e^{\left (-x - \frac {e^{\left (-2\right )}}{x} - 1\right )}\right )^{2} + 30 \, x^{2} e^{2} - 18 \, x e^{2} \log \left (4 \, e^{\left (-x - \frac {e^{\left (-2\right )}}{x} - 1\right )}\right ) - 9 \, {\left (x^{2} - e^{\left (-2\right )} \log \left (x^{2}\right )\right )} e^{2} + {\left (3 \, {\left (x^{2} - e^{\left (-2\right )} \log \left (x^{2}\right )\right )} \log \left (4 \, e^{\left (-x - \frac {e^{\left (-2\right )}}{x} - 1\right )}\right ) + \frac {{\left (x^{4} e^{4} + 3 \, x^{2} e^{2} - 6 \, {\left (x^{2} e^{2} + 1\right )} \log \relax (x) - 6\right )} e^{\left (-4\right )}}{x}\right )} e^{2} + 27 \, x e^{2} + 6 \, {\left (x + \frac {e^{\left (-2\right )}}{x}\right )} \log \relax (x) + 6 \, \log \relax (x) \log \left (4 \, e^{\left (-x - \frac {e^{\left (-2\right )}}{x} - 1\right )}\right ) - 3 \, x + \frac {6 \, e^{\left (-2\right )}}{x} - 18 \, \log \relax (x)\right )} e^{\left (-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.90, size = 41, normalized size = 1.28 \begin {gather*} \frac {{\mathrm {e}}^{-4}}{x}-x^2\,\left (8\,\ln \relax (2)-17\right )+4\,x^3+x\,\left (4\,{\mathrm {e}}^{-2}-16\,\ln \relax (2)+4\,{\ln \relax (2)}^2+16\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.42, size = 61, normalized size = 1.91 \begin {gather*} \frac {4 x^{3} e^{4} + x^{2} \left (- 8 e^{4} \log {\relax (2 )} + 17 e^{4}\right ) + x \left (- 16 e^{4} \log {\relax (2 )} + 4 e^{2} + 4 e^{4} \log {\relax (2 )}^{2} + 16 e^{4}\right ) + \frac {1}{x}}{e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________