Optimal. Leaf size=31 \[ \frac {e^{-\frac {e^x}{x}} \left (e^x+x\right ) \left (-\frac {3}{2}+\log \left (\frac {4}{x^2}\right )\right )^2}{x} \]
________________________________________________________________________________________
Rubi [F] time = 5.37, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-\frac {e^x}{x}} \left (e^{2 x} (9-9 x)+24 e^x x+24 x^2+\left (-16 e^x x-16 x^2+e^{2 x} (-12+12 x)\right ) \log \left (\frac {4}{x^2}\right )+e^{2 x} (4-4 x) \log ^2\left (\frac {4}{x^2}\right )\right )}{4 x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \frac {e^{-\frac {e^x}{x}} \left (e^{2 x} (9-9 x)+24 e^x x+24 x^2+\left (-16 e^x x-16 x^2+e^{2 x} (-12+12 x)\right ) \log \left (\frac {4}{x^2}\right )+e^{2 x} (4-4 x) \log ^2\left (\frac {4}{x^2}\right )\right )}{x^3} \, dx\\ &=\frac {1}{4} \int \frac {e^{-\frac {e^x}{x}} \left (3-2 \log \left (\frac {4}{x^2}\right )\right ) \left (-3 e^{2 x} (-1+x)+8 e^x x+8 x^2+2 e^{2 x} (-1+x) \log \left (\frac {4}{x^2}\right )\right )}{x^3} \, dx\\ &=\frac {1}{4} \int \left (-\frac {8 e^{-\frac {e^x}{x}+x} \left (-3+2 \log \left (\frac {4}{x^2}\right )\right )}{x^2}-\frac {8 e^{-\frac {e^x}{x}} \left (-3+2 \log \left (\frac {4}{x^2}\right )\right )}{x}-\frac {e^{-\frac {e^x}{x}+2 x} (-1+x) \left (-3+2 \log \left (\frac {4}{x^2}\right )\right )^2}{x^3}\right ) \, dx\\ &=-\left (\frac {1}{4} \int \frac {e^{-\frac {e^x}{x}+2 x} (-1+x) \left (-3+2 \log \left (\frac {4}{x^2}\right )\right )^2}{x^3} \, dx\right )-2 \int \frac {e^{-\frac {e^x}{x}+x} \left (-3+2 \log \left (\frac {4}{x^2}\right )\right )}{x^2} \, dx-2 \int \frac {e^{-\frac {e^x}{x}} \left (-3+2 \log \left (\frac {4}{x^2}\right )\right )}{x} \, dx\\ &=-\left (\frac {1}{4} \int \left (\frac {9 e^{-\frac {e^x}{x}+2 x} (-1+x)}{x^3}-\frac {12 e^{-\frac {e^x}{x}+2 x} (-1+x) \log \left (\frac {4}{x^2}\right )}{x^3}+\frac {4 e^{-\frac {e^x}{x}+2 x} (-1+x) \log ^2\left (\frac {4}{x^2}\right )}{x^3}\right ) \, dx\right )-2 \int \left (-\frac {3 e^{-\frac {e^x}{x}+x}}{x^2}+\frac {2 e^{-\frac {e^x}{x}+x} \log \left (\frac {4}{x^2}\right )}{x^2}\right ) \, dx-2 \int \left (-\frac {3 e^{-\frac {e^x}{x}}}{x}+\frac {2 e^{-\frac {e^x}{x}} \log \left (\frac {4}{x^2}\right )}{x}\right ) \, dx\\ &=-\left (\frac {9}{4} \int \frac {e^{-\frac {e^x}{x}+2 x} (-1+x)}{x^3} \, dx\right )+3 \int \frac {e^{-\frac {e^x}{x}+2 x} (-1+x) \log \left (\frac {4}{x^2}\right )}{x^3} \, dx-4 \int \frac {e^{-\frac {e^x}{x}+x} \log \left (\frac {4}{x^2}\right )}{x^2} \, dx-4 \int \frac {e^{-\frac {e^x}{x}} \log \left (\frac {4}{x^2}\right )}{x} \, dx+6 \int \frac {e^{-\frac {e^x}{x}+x}}{x^2} \, dx+6 \int \frac {e^{-\frac {e^x}{x}}}{x} \, dx-\int \frac {e^{-\frac {e^x}{x}+2 x} (-1+x) \log ^2\left (\frac {4}{x^2}\right )}{x^3} \, dx\\ &=-\left (\frac {9}{4} \int \left (-\frac {e^{-\frac {e^x}{x}+2 x}}{x^3}+\frac {e^{-\frac {e^x}{x}+2 x}}{x^2}\right ) \, dx\right )-3 \int -\frac {2 \left (-\int \frac {e^{-\frac {e^x}{x}+2 x}}{x^3} \, dx+\int \frac {e^{-\frac {e^x}{x}+2 x}}{x^2} \, dx\right )}{x} \, dx+4 \int -\frac {2 \int \frac {e^{-\frac {e^x}{x}+x}}{x^2} \, dx}{x} \, dx+4 \int -\frac {2 \int \frac {e^{-\frac {e^x}{x}}}{x} \, dx}{x} \, dx+6 \int \frac {e^{-\frac {e^x}{x}+x}}{x^2} \, dx+6 \int \frac {e^{-\frac {e^x}{x}}}{x} \, dx-\left (3 \log \left (\frac {4}{x^2}\right )\right ) \int \frac {e^{-\frac {e^x}{x}+2 x}}{x^3} \, dx+\left (3 \log \left (\frac {4}{x^2}\right )\right ) \int \frac {e^{-\frac {e^x}{x}+2 x}}{x^2} \, dx-\left (4 \log \left (\frac {4}{x^2}\right )\right ) \int \frac {e^{-\frac {e^x}{x}+x}}{x^2} \, dx-\left (4 \log \left (\frac {4}{x^2}\right )\right ) \int \frac {e^{-\frac {e^x}{x}}}{x} \, dx-\int \left (-\frac {e^{-\frac {e^x}{x}+2 x} \log ^2\left (\frac {4}{x^2}\right )}{x^3}+\frac {e^{-\frac {e^x}{x}+2 x} \log ^2\left (\frac {4}{x^2}\right )}{x^2}\right ) \, dx\\ &=\frac {9}{4} \int \frac {e^{-\frac {e^x}{x}+2 x}}{x^3} \, dx-\frac {9}{4} \int \frac {e^{-\frac {e^x}{x}+2 x}}{x^2} \, dx+6 \int \frac {e^{-\frac {e^x}{x}+x}}{x^2} \, dx+6 \int \frac {e^{-\frac {e^x}{x}}}{x} \, dx+6 \int \frac {-\int \frac {e^{-\frac {e^x}{x}+2 x}}{x^3} \, dx+\int \frac {e^{-\frac {e^x}{x}+2 x}}{x^2} \, dx}{x} \, dx-8 \int \frac {\int \frac {e^{-\frac {e^x}{x}+x}}{x^2} \, dx}{x} \, dx-8 \int \frac {\int \frac {e^{-\frac {e^x}{x}}}{x} \, dx}{x} \, dx-\left (3 \log \left (\frac {4}{x^2}\right )\right ) \int \frac {e^{-\frac {e^x}{x}+2 x}}{x^3} \, dx+\left (3 \log \left (\frac {4}{x^2}\right )\right ) \int \frac {e^{-\frac {e^x}{x}+2 x}}{x^2} \, dx-\left (4 \log \left (\frac {4}{x^2}\right )\right ) \int \frac {e^{-\frac {e^x}{x}+x}}{x^2} \, dx-\left (4 \log \left (\frac {4}{x^2}\right )\right ) \int \frac {e^{-\frac {e^x}{x}}}{x} \, dx+\int \frac {e^{-\frac {e^x}{x}+2 x} \log ^2\left (\frac {4}{x^2}\right )}{x^3} \, dx-\int \frac {e^{-\frac {e^x}{x}+2 x} \log ^2\left (\frac {4}{x^2}\right )}{x^2} \, dx\\ &=\frac {9}{4} \int \frac {e^{-\frac {e^x}{x}+2 x}}{x^3} \, dx-\frac {9}{4} \int \frac {e^{-\frac {e^x}{x}+2 x}}{x^2} \, dx+6 \int \frac {e^{-\frac {e^x}{x}+x}}{x^2} \, dx+6 \int \frac {e^{-\frac {e^x}{x}}}{x} \, dx+6 \int \left (-\frac {\int \frac {e^{-\frac {e^x}{x}+2 x}}{x^3} \, dx}{x}+\frac {\int \frac {e^{-\frac {e^x}{x}+2 x}}{x^2} \, dx}{x}\right ) \, dx-8 \int \frac {\int \frac {e^{-\frac {e^x}{x}+x}}{x^2} \, dx}{x} \, dx-8 \int \frac {\int \frac {e^{-\frac {e^x}{x}}}{x} \, dx}{x} \, dx-\left (3 \log \left (\frac {4}{x^2}\right )\right ) \int \frac {e^{-\frac {e^x}{x}+2 x}}{x^3} \, dx+\left (3 \log \left (\frac {4}{x^2}\right )\right ) \int \frac {e^{-\frac {e^x}{x}+2 x}}{x^2} \, dx-\left (4 \log \left (\frac {4}{x^2}\right )\right ) \int \frac {e^{-\frac {e^x}{x}+x}}{x^2} \, dx-\left (4 \log \left (\frac {4}{x^2}\right )\right ) \int \frac {e^{-\frac {e^x}{x}}}{x} \, dx+\int \frac {e^{-\frac {e^x}{x}+2 x} \log ^2\left (\frac {4}{x^2}\right )}{x^3} \, dx-\int \frac {e^{-\frac {e^x}{x}+2 x} \log ^2\left (\frac {4}{x^2}\right )}{x^2} \, dx\\ &=\frac {9}{4} \int \frac {e^{-\frac {e^x}{x}+2 x}}{x^3} \, dx-\frac {9}{4} \int \frac {e^{-\frac {e^x}{x}+2 x}}{x^2} \, dx+6 \int \frac {e^{-\frac {e^x}{x}+x}}{x^2} \, dx+6 \int \frac {e^{-\frac {e^x}{x}}}{x} \, dx-6 \int \frac {\int \frac {e^{-\frac {e^x}{x}+2 x}}{x^3} \, dx}{x} \, dx+6 \int \frac {\int \frac {e^{-\frac {e^x}{x}+2 x}}{x^2} \, dx}{x} \, dx-8 \int \frac {\int \frac {e^{-\frac {e^x}{x}+x}}{x^2} \, dx}{x} \, dx-8 \int \frac {\int \frac {e^{-\frac {e^x}{x}}}{x} \, dx}{x} \, dx-\left (3 \log \left (\frac {4}{x^2}\right )\right ) \int \frac {e^{-\frac {e^x}{x}+2 x}}{x^3} \, dx+\left (3 \log \left (\frac {4}{x^2}\right )\right ) \int \frac {e^{-\frac {e^x}{x}+2 x}}{x^2} \, dx-\left (4 \log \left (\frac {4}{x^2}\right )\right ) \int \frac {e^{-\frac {e^x}{x}+x}}{x^2} \, dx-\left (4 \log \left (\frac {4}{x^2}\right )\right ) \int \frac {e^{-\frac {e^x}{x}}}{x} \, dx+\int \frac {e^{-\frac {e^x}{x}+2 x} \log ^2\left (\frac {4}{x^2}\right )}{x^3} \, dx-\int \frac {e^{-\frac {e^x}{x}+2 x} \log ^2\left (\frac {4}{x^2}\right )}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.51, size = 34, normalized size = 1.10 \begin {gather*} \frac {e^{-\frac {e^x}{x}} \left (e^x+x\right ) \left (3-2 \log \left (\frac {4}{x^2}\right )\right )^2}{4 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 47, normalized size = 1.52 \begin {gather*} \frac {{\left (4 \, {\left (x + e^{x}\right )} \log \left (\frac {4}{x^{2}}\right )^{2} - 12 \, {\left (x + e^{x}\right )} \log \left (\frac {4}{x^{2}}\right ) + 9 \, x + 9 \, e^{x}\right )} e^{\left (-\frac {e^{x}}{x}\right )}}{4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (4 \, {\left (x - 1\right )} e^{\left (2 \, x\right )} \log \left (\frac {4}{x^{2}}\right )^{2} - 24 \, x^{2} + 9 \, {\left (x - 1\right )} e^{\left (2 \, x\right )} - 24 \, x e^{x} + 4 \, {\left (4 \, x^{2} - 3 \, {\left (x - 1\right )} e^{\left (2 \, x\right )} + 4 \, x e^{x}\right )} \log \left (\frac {4}{x^{2}}\right )\right )} e^{\left (-\frac {e^{x}}{x}\right )}}{4 \, x^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.37, size = 641, normalized size = 20.68
method | result | size |
risch | \(\frac {\left (9 x -32 x \ln \relax (2) \ln \relax (x )+9 \,{\mathrm e}^{x}+16 \ln \relax (2)^{2} {\mathrm e}^{x}-24 \,{\mathrm e}^{x} \ln \relax (2)+16 \,{\mathrm e}^{x} \ln \relax (x )^{2}+16 x \ln \relax (2)^{2}+24 \,{\mathrm e}^{x} \ln \relax (x )+16 x \ln \relax (x )^{2}-24 x \ln \relax (2)+24 x \ln \relax (x )-6 x \,\pi ^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{4}+4 x \,\pi ^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{5}-\pi ^{2} \mathrm {csgn}\left (i x \right )^{4} \mathrm {csgn}\left (i x^{2}\right )^{2} {\mathrm e}^{x}+4 \pi ^{2} \mathrm {csgn}\left (i x \right )^{3} \mathrm {csgn}\left (i x^{2}\right )^{3} {\mathrm e}^{x}-6 \pi ^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{4} {\mathrm e}^{x}+4 \pi ^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{5} {\mathrm e}^{x}-6 i \pi x \mathrm {csgn}\left (i x^{2}\right )^{3}-6 i {\mathrm e}^{x} \pi \mathrm {csgn}\left (i x^{2}\right )^{3}-x \,\pi ^{2} \mathrm {csgn}\left (i x \right )^{4} \mathrm {csgn}\left (i x^{2}\right )^{2}+4 x \,\pi ^{2} \mathrm {csgn}\left (i x \right )^{3} \mathrm {csgn}\left (i x^{2}\right )^{3}-32 \ln \relax (2) {\mathrm e}^{x} \ln \relax (x )-x \,\pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{6}-\pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{6} {\mathrm e}^{x}-16 i \pi \ln \relax (2) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2} {\mathrm e}^{x}-8 i \pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right ) \ln \relax (x )+8 i \pi \ln \relax (2) x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-16 i \pi \ln \relax (2) x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+16 i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2} \ln \relax (x )+12 i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-6 i \pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+12 i {\mathrm e}^{x} \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-6 i {\mathrm e}^{x} \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+8 i \pi \ln \relax (2) \mathrm {csgn}\left (i x^{2}\right )^{3} {\mathrm e}^{x}+8 i \pi \ln \relax (2) x \mathrm {csgn}\left (i x^{2}\right )^{3}-8 i \pi x \mathrm {csgn}\left (i x^{2}\right )^{3} \ln \relax (x )-8 i \pi \mathrm {csgn}\left (i x^{2}\right )^{3} {\mathrm e}^{x} \ln \relax (x )-8 i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right ) {\mathrm e}^{x} \ln \relax (x )+16 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2} {\mathrm e}^{x} \ln \relax (x )+8 i \pi \ln \relax (2) \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right ) {\mathrm e}^{x}\right ) {\mathrm e}^{-\frac {{\mathrm e}^{x}}{x}}}{4 x}\) | \(641\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 79, normalized size = 2.55 \begin {gather*} -\frac {{\left (8 \, x {\left (4 \, \log \relax (2) - 3\right )} \log \relax (x) - 16 \, x \log \relax (x)^{2} - {\left (16 \, \log \relax (2)^{2} - 24 \, \log \relax (2) + 9\right )} x - {\left (16 \, \log \relax (2)^{2} - 8 \, {\left (4 \, \log \relax (2) - 3\right )} \log \relax (x) + 16 \, \log \relax (x)^{2} - 24 \, \log \relax (2) + 9\right )} e^{x}\right )} e^{\left (-\frac {e^{x}}{x}\right )}}{4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {{\mathrm {e}}^{-\frac {{\mathrm {e}}^x}{x}}\,\left (\frac {\ln \left (\frac {4}{x^2}\right )\,\left (16\,x\,{\mathrm {e}}^x-{\mathrm {e}}^{2\,x}\,\left (12\,x-12\right )+16\,x^2\right )}{4}-6\,x\,{\mathrm {e}}^x+\frac {{\mathrm {e}}^{2\,x}\,\left (9\,x-9\right )}{4}-6\,x^2+\frac {{\mathrm {e}}^{2\,x}\,{\ln \left (\frac {4}{x^2}\right )}^2\,\left (4\,x-4\right )}{4}\right )}{x^3} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.45, size = 65, normalized size = 2.10 \begin {gather*} \frac {\left (4 x \log {\left (\frac {4}{x^{2}} \right )}^{2} - 12 x \log {\left (\frac {4}{x^{2}} \right )} + 9 x + 4 e^{x} \log {\left (\frac {4}{x^{2}} \right )}^{2} - 12 e^{x} \log {\left (\frac {4}{x^{2}} \right )} + 9 e^{x}\right ) e^{- \frac {e^{x}}{x}}}{4 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________