Optimal. Leaf size=23 \[ \frac {1}{9} e^{4-\frac {2 e^4}{x}} \left (4+e^3\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 23, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {12, 2209} \begin {gather*} \frac {1}{9} \left (4+e^3\right )^2 e^{4-\frac {2 e^4}{x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2209
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{9} \left (2 e^4 \left (4+e^3\right )^2\right ) \int \frac {e^{4-\frac {2 e^4}{x}}}{x^2} \, dx\\ &=\frac {1}{9} e^{4-\frac {2 e^4}{x}} \left (4+e^3\right )^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 23, normalized size = 1.00 \begin {gather*} \frac {1}{9} e^{4-\frac {2 e^4}{x}} \left (4+e^3\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 24, normalized size = 1.04 \begin {gather*} \frac {1}{9} \, {\left (e^{6} + 8 \, e^{3} + 16\right )} e^{\left (\frac {2 \, {\left (2 \, x - e^{4}\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 21, normalized size = 0.91 \begin {gather*} \frac {1}{9} \, {\left (e^{10} + 8 \, e^{7} + 16 \, e^{4}\right )} e^{\left (-\frac {2 \, e^{4}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 26, normalized size = 1.13
method | result | size |
gosper | \(\frac {{\mathrm e}^{4} \left ({\mathrm e}^{6}+8 \,{\mathrm e}^{3}+16\right ) {\mathrm e}^{-\frac {2 \,{\mathrm e}^{4}}{x}}}{9}\) | \(26\) |
norman | \(\frac {{\mathrm e}^{4} \left ({\mathrm e}^{6}+8 \,{\mathrm e}^{3}+16\right ) {\mathrm e}^{-\frac {2 \,{\mathrm e}^{4}}{x}}}{9}\) | \(26\) |
default | \(\frac {\left ({\mathrm e}^{4} {\mathrm e}^{6}+8 \,{\mathrm e}^{3} {\mathrm e}^{4}+16 \,{\mathrm e}^{4}\right ) {\mathrm e}^{-\frac {2 \,{\mathrm e}^{4}}{x}}}{9}\) | \(36\) |
derivativedivides | \(-\frac {\left (-\frac {2 \,{\mathrm e}^{4} {\mathrm e}^{6}}{9}-\frac {16 \,{\mathrm e}^{3} {\mathrm e}^{4}}{9}-\frac {32 \,{\mathrm e}^{4}}{9}\right ) {\mathrm e}^{-\frac {2 \,{\mathrm e}^{4}}{x}}}{2}\) | \(37\) |
risch | \(\frac {{\mathrm e}^{-\frac {2 \,{\mathrm e}^{4}}{x}} {\mathrm e}^{10}}{9}+\frac {8 \,{\mathrm e}^{-\frac {2 \,{\mathrm e}^{4}}{x}} {\mathrm e}^{7}}{9}+\frac {16 \,{\mathrm e}^{-\frac {2 \,{\mathrm e}^{4}}{x}} {\mathrm e}^{4}}{9}\) | \(38\) |
meijerg | \(-\frac {{\mathrm e}^{10} \left (1-{\mathrm e}^{-\frac {2 \,{\mathrm e}^{4}}{x}}\right )}{9}-\frac {8 \,{\mathrm e}^{7} \left (1-{\mathrm e}^{-\frac {2 \,{\mathrm e}^{4}}{x}}\right )}{9}-\frac {16 \,{\mathrm e}^{4} \left (1-{\mathrm e}^{-\frac {2 \,{\mathrm e}^{4}}{x}}\right )}{9}\) | \(50\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 21, normalized size = 0.91 \begin {gather*} \frac {1}{9} \, {\left (e^{10} + 8 \, e^{7} + 16 \, e^{4}\right )} e^{\left (-\frac {2 \, e^{4}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.61, size = 18, normalized size = 0.78 \begin {gather*} \frac {{\mathrm {e}}^{4-\frac {2\,{\mathrm {e}}^4}{x}}\,{\left ({\mathrm {e}}^3+4\right )}^2}{9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 22, normalized size = 0.96 \begin {gather*} \frac {\left (16 e^{4} + 8 e^{7} + e^{10}\right ) e^{- \frac {2 e^{4}}{x}}}{9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________