Optimal. Leaf size=29 \[ 4+5 \left (4-e^3-x\right ) \left (x+\frac {100}{\left (5-\frac {25}{(1+x)^2}\right )^2}\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.22, antiderivative size = 77, normalized size of antiderivative = 2.66, number of steps used = 11, number of rules used = 5, integrand size = 80, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.062, Rules used = {2074, 638, 614, 618, 206} \begin {gather*} -5 x^2-\frac {50 \left (-7 x-4 e^3+13\right )}{-x^2-2 x+4}-\frac {150 (x+1)}{-x^2-2 x+4}+\frac {500 \left (-x-e^3+4\right )}{\left (-x^2-2 x+4\right )^2}-5 e^3 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 206
Rule 614
Rule 618
Rule 638
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-5 e^3-10 x+\frac {2000 \left (-e^3+\left (5-e^3\right ) x\right )}{\left (4-2 x-x^2\right )^3}+\frac {100 \left (15+4 e^3-4 \left (5-e^3\right ) x\right )}{\left (4-2 x-x^2\right )^2}+\frac {200}{-4+2 x+x^2}\right ) \, dx\\ &=-5 e^3 x-5 x^2+100 \int \frac {15+4 e^3-4 \left (5-e^3\right ) x}{\left (4-2 x-x^2\right )^2} \, dx+200 \int \frac {1}{-4+2 x+x^2} \, dx+2000 \int \frac {-e^3+\left (5-e^3\right ) x}{\left (4-2 x-x^2\right )^3} \, dx\\ &=-5 e^3 x-5 x^2+\frac {500 \left (4-e^3-x\right )}{\left (4-2 x-x^2\right )^2}-\frac {50 \left (13-4 e^3-7 x\right )}{4-2 x-x^2}+350 \int \frac {1}{4-2 x-x^2} \, dx-400 \operatorname {Subst}\left (\int \frac {1}{20-x^2} \, dx,x,2+2 x\right )-1500 \int \frac {1}{\left (4-2 x-x^2\right )^2} \, dx\\ &=-5 e^3 x-5 x^2+\frac {500 \left (4-e^3-x\right )}{\left (4-2 x-x^2\right )^2}-\frac {50 \left (13-4 e^3-7 x\right )}{4-2 x-x^2}-\frac {150 (1+x)}{4-2 x-x^2}-40 \sqrt {5} \tanh ^{-1}\left (\frac {1+x}{\sqrt {5}}\right )-150 \int \frac {1}{4-2 x-x^2} \, dx-700 \operatorname {Subst}\left (\int \frac {1}{20-x^2} \, dx,x,-2-2 x\right )\\ &=-5 e^3 x-5 x^2+\frac {500 \left (4-e^3-x\right )}{\left (4-2 x-x^2\right )^2}-\frac {50 \left (13-4 e^3-7 x\right )}{4-2 x-x^2}-\frac {150 (1+x)}{4-2 x-x^2}+30 \sqrt {5} \tanh ^{-1}\left (\frac {1+x}{\sqrt {5}}\right )+300 \operatorname {Subst}\left (\int \frac {1}{20-x^2} \, dx,x,-2-2 x\right )\\ &=-5 e^3 x-5 x^2+\frac {500 \left (4-e^3-x\right )}{\left (4-2 x-x^2\right )^2}-\frac {50 \left (13-4 e^3-7 x\right )}{4-2 x-x^2}-\frac {150 (1+x)}{4-2 x-x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 47, normalized size = 1.62 \begin {gather*} -5 \left (e^3 x+x^2+\frac {100 \left (-4+e^3+x\right )}{\left (-4+2 x+x^2\right )^2}+\frac {40 \left (-4+e^3+x\right )}{-4+2 x+x^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.62, size = 76, normalized size = 2.62 \begin {gather*} -\frac {5 \, {\left (x^{6} + 4 \, x^{5} - 4 \, x^{4} + 24 \, x^{3} - 64 \, x^{2} + {\left (x^{5} + 4 \, x^{4} - 4 \, x^{3} + 24 \, x^{2} + 96 \, x - 60\right )} e^{3} - 380 \, x + 240\right )}}{x^{4} + 4 \, x^{3} - 4 \, x^{2} - 16 \, x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.16, size = 54, normalized size = 1.86 \begin {gather*} -5 \, x^{2} - 5 \, x e^{3} - \frac {100 \, {\left (2 \, x^{3} + 2 \, x^{2} e^{3} - 4 \, x^{2} + 4 \, x e^{3} - 19 \, x - 3 \, e^{3} + 12\right )}}{{\left (x^{2} + 2 \, x - 4\right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 53, normalized size = 1.83
method | result | size |
default | \(-5 x^{2}-5 x \,{\mathrm e}^{3}+\frac {-200 x^{3}+100 \left (-2 \,{\mathrm e}^{3}+4\right ) x^{2}+100 \left (19-4 \,{\mathrm e}^{3}\right ) x +300 \,{\mathrm e}^{3}-1200}{\left (x^{2}+2 x -4\right )^{2}}\) | \(53\) |
norman | \(\frac {\left (-20-5 \,{\mathrm e}^{3}\right ) x^{5}+\left (-200+100 \,{\mathrm e}^{3}\right ) x^{3}+\left (400-200 \,{\mathrm e}^{3}\right ) x^{2}+\left (2220-800 \,{\mathrm e}^{3}\right ) x -5 x^{6}-1520+620 \,{\mathrm e}^{3}}{\left (x^{2}+2 x -4\right )^{2}}\) | \(61\) |
risch | \(-5 x \,{\mathrm e}^{3}-5 x^{2}+\frac {-200 x^{3}+\left (400-200 \,{\mathrm e}^{3}\right ) x^{2}+\left (1900-400 \,{\mathrm e}^{3}\right ) x -1200+300 \,{\mathrm e}^{3}}{x^{4}+4 x^{3}-4 x^{2}-16 x +16}\) | \(62\) |
gosper | \(-\frac {5 \left (x^{5} {\mathrm e}^{3}+x^{6}+4 x^{5}-20 x^{3} {\mathrm e}^{3}+40 x^{2} {\mathrm e}^{3}+40 x^{3}+160 x \,{\mathrm e}^{3}-80 x^{2}-124 \,{\mathrm e}^{3}-444 x +304\right )}{x^{4}+4 x^{3}-4 x^{2}-16 x +16}\) | \(75\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.37, size = 61, normalized size = 2.10 \begin {gather*} -5 \, x^{2} - 5 \, x e^{3} - \frac {100 \, {\left (2 \, x^{3} + 2 \, x^{2} {\left (e^{3} - 2\right )} + x {\left (4 \, e^{3} - 19\right )} - 3 \, e^{3} + 12\right )}}{x^{4} + 4 \, x^{3} - 4 \, x^{2} - 16 \, x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.14, size = 62, normalized size = 2.14 \begin {gather*} -5\,x\,{\mathrm {e}}^3-5\,x^2-\frac {200\,x^3+\left (200\,{\mathrm {e}}^3-400\right )\,x^2+\left (400\,{\mathrm {e}}^3-1900\right )\,x-300\,{\mathrm {e}}^3+1200}{x^4+4\,x^3-4\,x^2-16\,x+16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.19, size = 61, normalized size = 2.10 \begin {gather*} - 5 x^{2} - 5 x e^{3} - \frac {200 x^{3} + x^{2} \left (-400 + 200 e^{3}\right ) + x \left (-1900 + 400 e^{3}\right ) - 300 e^{3} + 1200}{x^{4} + 4 x^{3} - 4 x^{2} - 16 x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________