Optimal. Leaf size=38 \[ \frac {3}{2}+\frac {4-e^{5/x}+e^x-x \left (1-\frac {\log \left (\frac {x}{3}\right )}{x}\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.11, antiderivative size = 35, normalized size of antiderivative = 0.92, number of steps used = 7, number of rules used = 4, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {14, 2197, 2288, 2304} \begin {gather*} -\frac {e^{5/x}}{x}+\frac {e^x}{x}+\frac {1}{x}+\frac {\log \left (\frac {x}{3}\right )+3}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2197
Rule 2288
Rule 2304
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {e^x (-1+x)}{x^2}+\frac {5 e^{5/x}-3 x+e^{5/x} x-x \log \left (\frac {x}{3}\right )}{x^3}\right ) \, dx\\ &=\int \frac {e^x (-1+x)}{x^2} \, dx+\int \frac {5 e^{5/x}-3 x+e^{5/x} x-x \log \left (\frac {x}{3}\right )}{x^3} \, dx\\ &=\frac {e^x}{x}+\int \left (\frac {e^{5/x} (5+x)}{x^3}+\frac {-3-\log \left (\frac {x}{3}\right )}{x^2}\right ) \, dx\\ &=\frac {e^x}{x}+\int \frac {e^{5/x} (5+x)}{x^3} \, dx+\int \frac {-3-\log \left (\frac {x}{3}\right )}{x^2} \, dx\\ &=\frac {1}{x}-\frac {e^{5/x}}{x}+\frac {e^x}{x}+\frac {3+\log \left (\frac {x}{3}\right )}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 24, normalized size = 0.63 \begin {gather*} \frac {4-e^{5/x}+e^x+\log \left (\frac {x}{3}\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.99, size = 20, normalized size = 0.53 \begin {gather*} \frac {e^{x} - e^{\frac {5}{x}} + \log \left (\frac {1}{3} \, x\right ) + 4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 20, normalized size = 0.53 \begin {gather*} \frac {e^{x} - e^{\frac {5}{x}} + \log \left (\frac {1}{3} \, x\right ) + 4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 26, normalized size = 0.68
method | result | size |
risch | \(\frac {\ln \left (\frac {x}{3}\right )}{x}+\frac {4+{\mathrm e}^{x}-{\mathrm e}^{\frac {5}{x}}}{x}\) | \(26\) |
default | \(-\frac {{\mathrm e}^{\frac {5}{x}}}{x}+\frac {{\mathrm e}^{x}}{x}+\frac {4}{x}+\frac {\ln \left (\frac {x}{3}\right )}{x}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.38, size = 40, normalized size = 1.05 \begin {gather*} \frac {\log \left (\frac {1}{3} \, x\right )}{x} + \frac {4}{x} + {\rm Ei}\relax (x) - \frac {1}{5} \, e^{\frac {5}{x}} + \frac {1}{5} \, \Gamma \left (2, -\frac {5}{x}\right ) - \Gamma \left (-1, -x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.67, size = 20, normalized size = 0.53 \begin {gather*} \frac {\ln \left (\frac {x}{3}\right )-{\mathrm {e}}^{5/x}+{\mathrm {e}}^x+4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.42, size = 20, normalized size = 0.53 \begin {gather*} - \frac {e^{\frac {5}{x}}}{x} + \frac {e^{x}}{x} + \frac {\log {\left (\frac {x}{3} \right )}}{x} + \frac {4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________