Optimal. Leaf size=23 \[ 1-x-2 \left (-3-e^2+x+x \log (-4+10 x)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 29, normalized size of antiderivative = 1.26, number of steps used = 6, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {6742, 43, 2389, 2295} \begin {gather*} -3 x-\frac {4}{5} \log (2-5 x)+\frac {2}{5} (2-5 x) \log (10 x-4) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 43
Rule 2295
Rule 2389
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {6-25 x}{-2+5 x}-2 \log (-4+10 x)\right ) \, dx\\ &=-(2 \int \log (-4+10 x) \, dx)+\int \frac {6-25 x}{-2+5 x} \, dx\\ &=-\left (\frac {1}{5} \operatorname {Subst}(\int \log (x) \, dx,x,-4+10 x)\right )+\int \left (-5-\frac {4}{-2+5 x}\right ) \, dx\\ &=-3 x-\frac {4}{5} \log (2-5 x)+\frac {2}{5} (2-5 x) \log (-4+10 x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 29, normalized size = 1.26 \begin {gather*} -3 x-\frac {4}{5} \log (2-5 x)+\frac {2}{5} (2-5 x) \log (-4+10 x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 13, normalized size = 0.57 \begin {gather*} -2 \, x \log \left (10 \, x - 4\right ) - 3 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 13, normalized size = 0.57 \begin {gather*} -2 \, x \log \left (10 \, x - 4\right ) - 3 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 14, normalized size = 0.61
method | result | size |
norman | \(-3 x -2 x \ln \left (10 x -4\right )\) | \(14\) |
risch | \(-3 x -2 x \ln \left (10 x -4\right )\) | \(14\) |
derivativedivides | \(-\frac {\left (10 x -4\right ) \ln \left (10 x -4\right )}{5}-3 x +\frac {6}{5}-\frac {4 \ln \left (10 x -4\right )}{5}\) | \(27\) |
default | \(-\frac {\left (10 x -4\right ) \ln \left (10 x -4\right )}{5}-3 x +\frac {6}{5}-\frac {4 \ln \left (10 x -4\right )}{5}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.45, size = 44, normalized size = 1.91 \begin {gather*} -\frac {2}{5} \, {\left (5 \, x + 2 \, \log \left (5 \, x - 2\right )\right )} \log \left (10 \, x - 4\right ) + \frac {4}{5} \, \log \relax (2) \log \left (5 \, x - 2\right ) + \frac {4}{5} \, \log \left (5 \, x - 2\right )^{2} - 3 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.12, size = 13, normalized size = 0.57 \begin {gather*} -x\,\left (2\,\ln \left (10\,x-4\right )+3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 14, normalized size = 0.61 \begin {gather*} - 2 x \log {\left (10 x - 4 \right )} - 3 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________