Optimal. Leaf size=22 \[ \frac {60 x}{2-x+\frac {\log ^2\left (\frac {x}{4}\right )}{x}} \]
________________________________________________________________________________________
Rubi [F] time = 0.92, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {120 x^2-120 x \log \left (\frac {x}{4}\right )+120 x \log ^2\left (\frac {x}{4}\right )}{4 x^2-4 x^3+x^4+\left (4 x-2 x^2\right ) \log ^2\left (\frac {x}{4}\right )+\log ^4\left (\frac {x}{4}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {120 x \left (x+\log (4)+\log ^2\left (\frac {x}{4}\right )-\log (x)\right )}{\left ((-2+x) x-\log ^2\left (\frac {x}{4}\right )\right )^2} \, dx\\ &=120 \int \frac {x \left (x+\log (4)+\log ^2\left (\frac {x}{4}\right )-\log (x)\right )}{\left ((-2+x) x-\log ^2\left (\frac {x}{4}\right )\right )^2} \, dx\\ &=120 \int \left (\frac {x \left (x+\log (4)+\log ^2\left (\frac {x}{4}\right )\right )}{\left (-2 x+x^2-\log ^2\left (\frac {x}{4}\right )\right )^2}-\frac {x \log (x)}{\left (-2 x+x^2-\log ^2\left (\frac {x}{4}\right )\right )^2}\right ) \, dx\\ &=120 \int \frac {x \left (x+\log (4)+\log ^2\left (\frac {x}{4}\right )\right )}{\left (-2 x+x^2-\log ^2\left (\frac {x}{4}\right )\right )^2} \, dx-120 \int \frac {x \log (x)}{\left (-2 x+x^2-\log ^2\left (\frac {x}{4}\right )\right )^2} \, dx\\ &=120 \int \left (\frac {x \left (-x+x^2+\log (4)\right )}{\left (-2 x+x^2-\log ^2\left (\frac {x}{4}\right )\right )^2}-\frac {x}{-2 x+x^2-\log ^2\left (\frac {x}{4}\right )}\right ) \, dx-120 \int \frac {x \log (x)}{\left (-2 x+x^2-\log ^2\left (\frac {x}{4}\right )\right )^2} \, dx\\ &=120 \int \frac {x \left (-x+x^2+\log (4)\right )}{\left (-2 x+x^2-\log ^2\left (\frac {x}{4}\right )\right )^2} \, dx-120 \int \frac {x}{-2 x+x^2-\log ^2\left (\frac {x}{4}\right )} \, dx-120 \int \frac {x \log (x)}{\left (-2 x+x^2-\log ^2\left (\frac {x}{4}\right )\right )^2} \, dx\\ &=-\left (120 \int \frac {x}{-2 x+x^2-\log ^2\left (\frac {x}{4}\right )} \, dx\right )+120 \int \left (-\frac {x^2}{\left (-2 x+x^2-\log ^2\left (\frac {x}{4}\right )\right )^2}+\frac {x^3}{\left (-2 x+x^2-\log ^2\left (\frac {x}{4}\right )\right )^2}+\frac {x \log (4)}{\left (-2 x+x^2-\log ^2\left (\frac {x}{4}\right )\right )^2}\right ) \, dx-120 \int \frac {x \log (x)}{\left (-2 x+x^2-\log ^2\left (\frac {x}{4}\right )\right )^2} \, dx\\ &=-\left (120 \int \frac {x^2}{\left (-2 x+x^2-\log ^2\left (\frac {x}{4}\right )\right )^2} \, dx\right )+120 \int \frac {x^3}{\left (-2 x+x^2-\log ^2\left (\frac {x}{4}\right )\right )^2} \, dx-120 \int \frac {x}{-2 x+x^2-\log ^2\left (\frac {x}{4}\right )} \, dx-120 \int \frac {x \log (x)}{\left (-2 x+x^2-\log ^2\left (\frac {x}{4}\right )\right )^2} \, dx+(120 \log (4)) \int \frac {x}{\left (-2 x+x^2-\log ^2\left (\frac {x}{4}\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.31, size = 24, normalized size = 1.09 \begin {gather*} -\frac {120 x^2}{2 (-2+x) x-2 \log ^2\left (\frac {x}{4}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 22, normalized size = 1.00 \begin {gather*} -\frac {60 \, x^{2}}{x^{2} - \log \left (\frac {1}{4} \, x\right )^{2} - 2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 22, normalized size = 1.00 \begin {gather*} -\frac {60 \, x^{2}}{x^{2} - \log \left (\frac {1}{4} \, x\right )^{2} - 2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 23, normalized size = 1.05
method | result | size |
norman | \(-\frac {60 x^{2}}{x^{2}-\ln \left (\frac {x}{4}\right )^{2}-2 x}\) | \(23\) |
risch | \(-\frac {60 x^{2}}{x^{2}-\ln \left (\frac {x}{4}\right )^{2}-2 x}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 32, normalized size = 1.45 \begin {gather*} -\frac {60 \, x^{2}}{x^{2} - 4 \, \log \relax (2)^{2} + 4 \, \log \relax (2) \log \relax (x) - \log \relax (x)^{2} - 2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.35, size = 22, normalized size = 1.00 \begin {gather*} \frac {60\,x^2}{-x^2+2\,x+{\ln \left (\frac {x}{4}\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 17, normalized size = 0.77 \begin {gather*} \frac {60 x^{2}}{- x^{2} + 2 x + \log {\left (\frac {x}{4} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________