Optimal. Leaf size=29 \[ \frac {16}{x^2}-x-\frac {\left (2+e^{2 e^{2 x}}+x\right )^2}{\log ^2(2)} \]
________________________________________________________________________________________
Rubi [F] time = 0.32, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4 x^3-8 e^{4 e^{2 x}+2 x} x^3-2 x^4+e^{2 e^{2 x}} \left (-2 x^3+e^{2 x} \left (-16 x^3-8 x^4\right )\right )+\left (-32-x^3\right ) \log ^2(2)}{x^3 \log ^2(2)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-4 x^3-8 e^{4 e^{2 x}+2 x} x^3-2 x^4+e^{2 e^{2 x}} \left (-2 x^3+e^{2 x} \left (-16 x^3-8 x^4\right )\right )+\left (-32-x^3\right ) \log ^2(2)}{x^3} \, dx}{\log ^2(2)}\\ &=\frac {\int \left (8 e^{2 \left (e^{2 x}+x\right )} \left (-2-e^{2 e^{2 x}}-x\right )+\frac {-2 e^{2 e^{2 x}} x^3-2 x^4-32 \log ^2(2)-4 x^3 \left (1+\frac {\log ^2(2)}{4}\right )}{x^3}\right ) \, dx}{\log ^2(2)}\\ &=\frac {\int \frac {-2 e^{2 e^{2 x}} x^3-2 x^4-32 \log ^2(2)-4 x^3 \left (1+\frac {\log ^2(2)}{4}\right )}{x^3} \, dx}{\log ^2(2)}+\frac {8 \int e^{2 \left (e^{2 x}+x\right )} \left (-2-e^{2 e^{2 x}}-x\right ) \, dx}{\log ^2(2)}\\ &=\frac {\int \left (-2 e^{2 e^{2 x}}+\frac {-2 x^4-32 \log ^2(2)-x^3 \left (4+\log ^2(2)\right )}{x^3}\right ) \, dx}{\log ^2(2)}+\frac {8 \int \left (-2 e^{2 \left (e^{2 x}+x\right )}-e^{2 e^{2 x}+2 \left (e^{2 x}+x\right )}-e^{2 \left (e^{2 x}+x\right )} x\right ) \, dx}{\log ^2(2)}\\ &=\frac {\int \frac {-2 x^4-32 \log ^2(2)-x^3 \left (4+\log ^2(2)\right )}{x^3} \, dx}{\log ^2(2)}-\frac {2 \int e^{2 e^{2 x}} \, dx}{\log ^2(2)}-\frac {8 \int e^{2 e^{2 x}+2 \left (e^{2 x}+x\right )} \, dx}{\log ^2(2)}-\frac {8 \int e^{2 \left (e^{2 x}+x\right )} x \, dx}{\log ^2(2)}-\frac {16 \int e^{2 \left (e^{2 x}+x\right )} \, dx}{\log ^2(2)}\\ &=\frac {\int \left (-2 x-\frac {32 \log ^2(2)}{x^3}-4 \left (1+\frac {\log ^2(2)}{4}\right )\right ) \, dx}{\log ^2(2)}-\frac {\operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,e^{2 x}\right )}{\log ^2(2)}-\frac {8 \int e^{2 \left (2 e^{2 x}+x\right )} \, dx}{\log ^2(2)}-\frac {8 \int e^{2 \left (e^{2 x}+x\right )} x \, dx}{\log ^2(2)}-\frac {16 \int e^{2 \left (e^{2 x}+x\right )} \, dx}{\log ^2(2)}\\ &=\frac {16}{x^2}-x \left (1+\frac {4}{\log ^2(2)}\right )-\frac {x^2}{\log ^2(2)}-\frac {\text {Ei}\left (2 e^{2 x}\right )}{\log ^2(2)}-\frac {8 \int e^{2 \left (2 e^{2 x}+x\right )} \, dx}{\log ^2(2)}-\frac {8 \int e^{2 \left (e^{2 x}+x\right )} x \, dx}{\log ^2(2)}-\frac {16 \int e^{2 \left (e^{2 x}+x\right )} \, dx}{\log ^2(2)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.13, size = 59, normalized size = 2.03 \begin {gather*} -\frac {e^{4 e^{2 x}} x^2+x^4+2 e^{2 e^{2 x}} x^2 (2+x)-16 \log ^2(2)+x^3 \left (4+\log ^2(2)\right )}{x^2 \log ^2(2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.97, size = 57, normalized size = 1.97 \begin {gather*} -\frac {x^{4} + 4 \, x^{3} + x^{2} e^{\left (4 \, e^{\left (2 \, x\right )}\right )} + {\left (x^{3} - 16\right )} \log \relax (2)^{2} + 2 \, {\left (x^{3} + 2 \, x^{2}\right )} e^{\left (2 \, e^{\left (2 \, x\right )}\right )}}{x^{2} \log \relax (2)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.21, size = 100, normalized size = 3.45 \begin {gather*} -\frac {{\left (x^{3} e^{\left (2 \, x\right )} \log \relax (2)^{2} + x^{4} e^{\left (2 \, x\right )} + 4 \, x^{3} e^{\left (2 \, x\right )} + 2 \, x^{3} e^{\left (2 \, x + 2 \, e^{\left (2 \, x\right )}\right )} + x^{2} e^{\left (2 \, x + 4 \, e^{\left (2 \, x\right )}\right )} + 4 \, x^{2} e^{\left (2 \, x + 2 \, e^{\left (2 \, x\right )}\right )} - 16 \, e^{\left (2 \, x\right )} \log \relax (2)^{2}\right )} e^{\left (-2 \, x\right )}}{x^{2} \log \relax (2)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.05, size = 56, normalized size = 1.93
method | result | size |
risch | \(-x -\frac {x^{2}}{\ln \relax (2)^{2}}-\frac {4 x}{\ln \relax (2)^{2}}+\frac {16}{x^{2}}-\frac {{\mathrm e}^{4 \,{\mathrm e}^{2 x}}}{\ln \relax (2)^{2}}+\frac {\left (-2 x -4\right ) {\mathrm e}^{2 \,{\mathrm e}^{2 x}}}{\ln \relax (2)^{2}}\) | \(56\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {x \log \relax (2)^{2} + x^{2} + 2 \, x e^{\left (2 \, e^{\left (2 \, x\right )}\right )} + 4 \, x - \frac {16 \, \log \relax (2)^{2}}{x^{2}} + e^{\left (4 \, e^{\left (2 \, x\right )}\right )} + 4 \, e^{\left (2 \, e^{\left (2 \, x\right )}\right )}}{\log \relax (2)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.28, size = 64, normalized size = 2.21 \begin {gather*} \frac {16}{x^2}-\frac {{\mathrm {e}}^{4\,{\mathrm {e}}^{2\,x}}}{{\ln \relax (2)}^2}-{\mathrm {e}}^{2\,{\mathrm {e}}^{2\,x}}\,\left (\frac {2\,x}{{\ln \relax (2)}^2}+\frac {4}{{\ln \relax (2)}^2}\right )-\frac {x^2}{{\ln \relax (2)}^2}-\frac {x\,\left ({\ln \relax (2)}^2+4\right )}{{\ln \relax (2)}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.32, size = 70, normalized size = 2.41 \begin {gather*} \frac {\left (- 2 x \log {\relax (2 )}^{2} - 4 \log {\relax (2 )}^{2}\right ) e^{2 e^{2 x}} - e^{4 e^{2 x}} \log {\relax (2 )}^{2}}{\log {\relax (2 )}^{4}} + \frac {- x^{2} - x \left (\log {\relax (2 )}^{2} + 4\right ) + \frac {16 \log {\relax (2 )}^{2}}{x^{2}}}{\log {\relax (2 )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________