Optimal. Leaf size=24 \[ 3 \left (-\frac {x}{\log (4)}+\frac {8 \log (4)}{7-\log (6 x)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.33, antiderivative size = 22, normalized size of antiderivative = 0.92, number of steps used = 6, number of rules used = 5, integrand size = 54, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.093, Rules used = {6741, 12, 6742, 2302, 30} \begin {gather*} \frac {24 \log (4)}{7-\log (6 x)}-\frac {3 x}{\log (4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 30
Rule 2302
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 \left (-49 x+8 \log ^2(4)+14 x \log (6 x)-x \log ^2(6 x)\right )}{x \log (4) (7-\log (6 x))^2} \, dx\\ &=\frac {3 \int \frac {-49 x+8 \log ^2(4)+14 x \log (6 x)-x \log ^2(6 x)}{x (7-\log (6 x))^2} \, dx}{\log (4)}\\ &=\frac {3 \int \left (-1+\frac {8 \log ^2(4)}{x (-7+\log (6 x))^2}\right ) \, dx}{\log (4)}\\ &=-\frac {3 x}{\log (4)}+(24 \log (4)) \int \frac {1}{x (-7+\log (6 x))^2} \, dx\\ &=-\frac {3 x}{\log (4)}+(24 \log (4)) \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,-7+\log (6 x)\right )\\ &=-\frac {3 x}{\log (4)}+\frac {24 \log (4)}{7-\log (6 x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 24, normalized size = 1.00 \begin {gather*} -\frac {3 \left (x-\frac {8 \log ^2(4)}{7-\log (6 x)}\right )}{\log (4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 32, normalized size = 1.33 \begin {gather*} -\frac {3 \, {\left (32 \, \log \relax (2)^{2} + x \log \left (6 \, x\right ) - 7 \, x\right )}}{2 \, {\left (\log \relax (2) \log \left (6 \, x\right ) - 7 \, \log \relax (2)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 22, normalized size = 0.92 \begin {gather*} -\frac {3 \, x}{2 \, \log \relax (2)} - \frac {48 \, \log \relax (2)}{\log \relax (2) + \log \left (3 \, x\right ) - 7} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 21, normalized size = 0.88
method | result | size |
derivativedivides | \(-\frac {3 x}{2 \ln \relax (2)}-\frac {48 \ln \relax (2)}{\ln \left (6 x \right )-7}\) | \(21\) |
default | \(-\frac {3 x}{2 \ln \relax (2)}-\frac {48 \ln \relax (2)}{\ln \left (6 x \right )-7}\) | \(21\) |
risch | \(-\frac {3 x}{2 \ln \relax (2)}-\frac {48 \ln \relax (2)}{\ln \left (6 x \right )-7}\) | \(21\) |
norman | \(\frac {\frac {21 x}{2 \ln \relax (2)}-\frac {3 x \ln \left (6 x \right )}{2 \ln \relax (2)}-48 \ln \relax (2)}{\ln \left (6 x \right )-7}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 33, normalized size = 1.38 \begin {gather*} -\frac {48 \, \log \relax (2)^{2}}{{\left (\log \relax (3) - 7\right )} \log \relax (2) + \log \relax (2)^{2} + \log \relax (2) \log \relax (x)} - \frac {3 \, x}{2 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.41, size = 20, normalized size = 0.83 \begin {gather*} -\frac {3\,x}{2\,\ln \relax (2)}-\frac {48\,\ln \relax (2)}{\ln \left (6\,x\right )-7} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 20, normalized size = 0.83 \begin {gather*} - \frac {3 x}{2 \log {\relax (2 )}} - \frac {48 \log {\relax (2 )}}{\log {\left (6 x \right )} - 7} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________