Optimal. Leaf size=32 \[ 5-e^{\left (5+(4+x)^2\right ) \left (\frac {4}{x}+\log (x)\right )}-\frac {1}{2 x}+2 x \]
________________________________________________________________________________________
Rubi [F] time = 2.10, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1+4 x^2+\exp \left (\frac {84+32 x+4 x^2+\left (21 x+8 x^2+x^3\right ) \log (x)}{x}\right ) \left (168-42 x-24 x^2-2 x^3+\left (-16 x^2-4 x^3\right ) \log (x)\right )}{2 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {1+4 x^2+\exp \left (\frac {84+32 x+4 x^2+\left (21 x+8 x^2+x^3\right ) \log (x)}{x}\right ) \left (168-42 x-24 x^2-2 x^3+\left (-16 x^2-4 x^3\right ) \log (x)\right )}{x^2} \, dx\\ &=\frac {1}{2} \int \left (\frac {1+4 x^2}{x^2}-2 e^{32+\frac {84}{x}+4 x} x^{19+8 x+x^2} \left (-84+21 x+12 x^2+x^3+8 x^2 \log (x)+2 x^3 \log (x)\right )\right ) \, dx\\ &=\frac {1}{2} \int \frac {1+4 x^2}{x^2} \, dx-\int e^{32+\frac {84}{x}+4 x} x^{19+8 x+x^2} \left (-84+21 x+12 x^2+x^3+8 x^2 \log (x)+2 x^3 \log (x)\right ) \, dx\\ &=\frac {1}{2} \int \left (4+\frac {1}{x^2}\right ) \, dx-\int \left (-84 e^{32+\frac {84}{x}+4 x} x^{19+8 x+x^2}+21 e^{32+\frac {84}{x}+4 x} x^{20+8 x+x^2}+12 e^{32+\frac {84}{x}+4 x} x^{21+8 x+x^2}+e^{32+\frac {84}{x}+4 x} x^{22+8 x+x^2}+8 e^{32+\frac {84}{x}+4 x} x^{21+8 x+x^2} \log (x)+2 e^{32+\frac {84}{x}+4 x} x^{22+8 x+x^2} \log (x)\right ) \, dx\\ &=-\frac {1}{2 x}+2 x-2 \int e^{32+\frac {84}{x}+4 x} x^{22+8 x+x^2} \log (x) \, dx-8 \int e^{32+\frac {84}{x}+4 x} x^{21+8 x+x^2} \log (x) \, dx-12 \int e^{32+\frac {84}{x}+4 x} x^{21+8 x+x^2} \, dx-21 \int e^{32+\frac {84}{x}+4 x} x^{20+8 x+x^2} \, dx+84 \int e^{32+\frac {84}{x}+4 x} x^{19+8 x+x^2} \, dx-\int e^{32+\frac {84}{x}+4 x} x^{22+8 x+x^2} \, dx\\ &=-\frac {1}{2 x}+2 x+2 \int \frac {\int e^{4 \left (8+\frac {21}{x}+x\right )} x^{22+8 x+x^2} \, dx}{x} \, dx+8 \int \frac {\int e^{4 \left (8+\frac {21}{x}+x\right )} x^{21+8 x+x^2} \, dx}{x} \, dx-12 \int e^{32+\frac {84}{x}+4 x} x^{21+8 x+x^2} \, dx-21 \int e^{32+\frac {84}{x}+4 x} x^{20+8 x+x^2} \, dx+84 \int e^{32+\frac {84}{x}+4 x} x^{19+8 x+x^2} \, dx-(2 \log (x)) \int e^{32+\frac {84}{x}+4 x} x^{22+8 x+x^2} \, dx-(8 \log (x)) \int e^{32+\frac {84}{x}+4 x} x^{21+8 x+x^2} \, dx-\int e^{32+\frac {84}{x}+4 x} x^{22+8 x+x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.09, size = 34, normalized size = 1.06 \begin {gather*} -\frac {1}{2 x}+2 x-e^{32+\frac {84}{x}+4 x} x^{21+x (8+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 45, normalized size = 1.41 \begin {gather*} \frac {4 \, x^{2} - 2 \, x e^{\left (\frac {4 \, x^{2} + {\left (x^{3} + 8 \, x^{2} + 21 \, x\right )} \log \relax (x) + 32 \, x + 84}{x}\right )} - 1}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 37, normalized size = 1.16 \begin {gather*} 2 \, x - \frac {1}{2 \, x} - e^{\left (x^{2} \log \relax (x) + 8 \, x \log \relax (x) + 4 \, x + \frac {84}{x} + 21 \, \log \relax (x) + 32\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 31, normalized size = 0.97
method | result | size |
risch | \(-{\mathrm e}^{\frac {\left (x^{2}+8 x +21\right ) \left (x \ln \relax (x )+4\right )}{x}}+2 x -\frac {1}{2 x}\) | \(31\) |
default | \(-{\mathrm e}^{\frac {\left (x^{3}+8 x^{2}+21 x \right ) \ln \relax (x )+4 x^{2}+32 x +84}{x}}+2 x -\frac {1}{2 x}\) | \(42\) |
norman | \(\frac {-\frac {1}{2}+2 x^{2}-x \,{\mathrm e}^{\frac {\left (x^{3}+8 x^{2}+21 x \right ) \ln \relax (x )+4 x^{2}+32 x +84}{x}}}{x}\) | \(45\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 36, normalized size = 1.12 \begin {gather*} -x^{21} e^{\left (x^{2} \log \relax (x) + 8 \, x \log \relax (x) + 4 \, x + \frac {84}{x} + 32\right )} + 2 \, x - \frac {1}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.10, size = 36, normalized size = 1.12 \begin {gather*} 2\,x-\frac {1}{2\,x}-x^{8\,x}\,x^{x^2}\,x^{21}\,{\mathrm {e}}^{4\,x}\,{\mathrm {e}}^{32}\,{\mathrm {e}}^{84/x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.43, size = 36, normalized size = 1.12 \begin {gather*} 2 x - e^{\frac {4 x^{2} + 32 x + \left (x^{3} + 8 x^{2} + 21 x\right ) \log {\relax (x )} + 84}{x}} - \frac {1}{2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________