Optimal. Leaf size=20 \[ e^x+x \left (x+\left (\frac {1}{x}+x\right ) \left (x+\log ^4(x)\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 23, normalized size of antiderivative = 1.15, number of steps used = 16, number of rules used = 7, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {14, 2194, 2353, 2302, 30, 2305, 2304} \begin {gather*} x^3+x^2+x^2 \log ^4(x)+e^x+x+\log ^4(x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 30
Rule 2194
Rule 2302
Rule 2304
Rule 2305
Rule 2353
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^x+\frac {x+2 x^2+3 x^3+4 \log ^3(x)+4 x^2 \log ^3(x)+2 x^2 \log ^4(x)}{x}\right ) \, dx\\ &=\int e^x \, dx+\int \frac {x+2 x^2+3 x^3+4 \log ^3(x)+4 x^2 \log ^3(x)+2 x^2 \log ^4(x)}{x} \, dx\\ &=e^x+\int \left (1+2 x+3 x^2+\frac {4 \left (1+x^2\right ) \log ^3(x)}{x}+2 x \log ^4(x)\right ) \, dx\\ &=e^x+x+x^2+x^3+2 \int x \log ^4(x) \, dx+4 \int \frac {\left (1+x^2\right ) \log ^3(x)}{x} \, dx\\ &=e^x+x+x^2+x^3+x^2 \log ^4(x)-4 \int x \log ^3(x) \, dx+4 \int \left (\frac {\log ^3(x)}{x}+x \log ^3(x)\right ) \, dx\\ &=e^x+x+x^2+x^3-2 x^2 \log ^3(x)+x^2 \log ^4(x)+4 \int \frac {\log ^3(x)}{x} \, dx+4 \int x \log ^3(x) \, dx+6 \int x \log ^2(x) \, dx\\ &=e^x+x+x^2+x^3+3 x^2 \log ^2(x)+x^2 \log ^4(x)+4 \operatorname {Subst}\left (\int x^3 \, dx,x,\log (x)\right )-6 \int x \log (x) \, dx-6 \int x \log ^2(x) \, dx\\ &=e^x+x+\frac {5 x^2}{2}+x^3-3 x^2 \log (x)+\log ^4(x)+x^2 \log ^4(x)+6 \int x \log (x) \, dx\\ &=e^x+x+x^2+x^3+\log ^4(x)+x^2 \log ^4(x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 23, normalized size = 1.15 \begin {gather*} e^x+x+x^2+x^3+\log ^4(x)+x^2 \log ^4(x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 20, normalized size = 1.00 \begin {gather*} {\left (x^{2} + 1\right )} \log \relax (x)^{4} + x^{3} + x^{2} + x + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 22, normalized size = 1.10 \begin {gather*} x^{2} \log \relax (x)^{4} + \log \relax (x)^{4} + x^{3} + x^{2} + x + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 21, normalized size = 1.05
method | result | size |
risch | \(\left (x^{2}+1\right ) \ln \relax (x )^{4}+x^{3}+x^{2}+x +{\mathrm e}^{x}\) | \(21\) |
default | \(x^{3}+x^{2}+x +x^{2} \ln \relax (x )^{4}+\ln \relax (x )^{4}+{\mathrm e}^{x}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.38, size = 66, normalized size = 3.30 \begin {gather*} \log \relax (x)^{4} + \frac {1}{2} \, {\left (2 \, \log \relax (x)^{4} - 4 \, \log \relax (x)^{3} + 6 \, \log \relax (x)^{2} - 6 \, \log \relax (x) + 3\right )} x^{2} + \frac {1}{2} \, {\left (4 \, \log \relax (x)^{3} - 6 \, \log \relax (x)^{2} + 6 \, \log \relax (x) - 3\right )} x^{2} + x^{3} + x^{2} + x + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.82, size = 20, normalized size = 1.00 \begin {gather*} x+{\mathrm {e}}^x+x^2+x^3+{\ln \relax (x)}^4\,\left (x^2+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 20, normalized size = 1.00 \begin {gather*} x^{3} + x^{2} + x + \left (x^{2} + 1\right ) \log {\relax (x )}^{4} + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________